cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A007088 The binary numbers (or binary words, or binary vectors, or binary expansion of n): numbers written in base 2.

Original entry on oeis.org

0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000, 10001, 10010, 10011, 10100, 10101, 10110, 10111, 11000, 11001, 11010, 11011, 11100, 11101, 11110, 11111, 100000, 100001, 100010, 100011, 100100, 100101, 100110, 100111
Offset: 0

Views

Author

Keywords

Comments

List of binary numbers. (This comment is to assist people searching for that particular phrase. - N. J. A. Sloane, Apr 08 2016)
Or, numbers that are sums of distinct powers of 10.
Or, numbers having only digits 0 and 1 in their decimal representation.
Complement of A136399; A064770(a(n)) = a(n). - Reinhard Zumkeller, Dec 30 2007
From Rick L. Shepherd, Jun 25 2009: (Start)
Nonnegative integers with no decimal digit > 1.
Thus nonnegative integers n in base 10 such that kn can be calculated by normal addition (i.e., n + n + ... + n, with k n's (but not necessarily k + k + ... + k, with n k's)) or multiplication without requiring any carry operations for 0 <= k <= 9. (End)
For n > 1: A257773(a(n)) = 10, numbers that are Belgian-k for k=0..9. - Reinhard Zumkeller, May 08 2015
For any integer n>=0, find the binary representation and then interpret as decimal representation giving a(n). - Michael Somos, Nov 15 2015
N is in this sequence iff A007953(N) = A101337(N). A028897 is a left inverse. - M. F. Hasler, Nov 18 2019
For n > 0, numbers whose largest decimal digit is 1. - Stefano Spezia, Nov 15 2023

Examples

			a(6)=110 because (1/2)*((1-(-1)^6)*10^0 + (1-(-1)^3)*10^1 + (1-(-1)^1)*10^2) = 10 + 100.
G.f. = x + 10*x^2 + 11*x^3 + 100*x^4 + 101*x^5 + 110*x^6 + 111*x^7 + 1000*x^8 + ...
.
  000    The numbers < 2^n can be regarded as vectors with
  001    a fixed length n if padded with zeros on the left
  010    side. This represents the n-fold Cartesian product
  011    over the set {0, 1}. In the example on the left,
  100    n = 3. (See also the second Python program.)
  101    Binary vectors in this format can also be seen as a
  110    representation of the subsets of a set with n elements.
  111    - _Peter Luschny_, Jan 22 2024
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 21.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §2.8 Binary, Octal, Hexadecimal, p. 64.
  • Manfred R. Schroeder, "Fractals, Chaos, Power Laws", W. H. Freeman, 1991, p. 383.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The basic sequences concerning the binary expansion of n are this one, A000120 (Hammingweight: sum of bits), A000788 (partial sums of A000120), A000069 (A000120 is odd), A001969 (A000120 is even), A023416 (number of bits 0), A059015 (partial sums). Bisections A099820 and A099821.
Cf. A028897 (convert binary to decimal).

Programs

  • Haskell
    a007088 0 = 0
    a007088 n = 10 * a007088 n' + m where (n',m) = divMod n 2
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Maple
    A007088 := n-> convert(n, binary): seq(A007088(n), n=0..50); # R. J. Mathar, Aug 11 2009
  • Mathematica
    Table[ FromDigits[ IntegerDigits[n, 2]], {n, 0, 39}]
    Table[Sum[ (Floor[( Mod[f/2 ^n, 2])])*(10^n) , {n, 0, Floor[Log[2, f]]}], {f, 1, 100}] (* José de Jesús Camacho Medina, Jul 24 2014 *)
    FromDigits/@Tuples[{1,0},6]//Sort (* Harvey P. Dale, Aug 10 2017 *)
  • PARI
    {a(n) = subst( Pol( binary(n)), x, 10)}; /* Michael Somos, Jun 07 2002 */
    
  • PARI
    {a(n) = if( n<=0, 0, n%2 + 10*a(n\2))}; /* Michael Somos, Jun 07 2002 */
    
  • PARI
    a(n)=fromdigits(binary(n),10) \\ Charles R Greathouse IV, Apr 08 2015
    
  • Python
    def a(n): return int(bin(n)[2:])
    print([a(n) for n in range(40)]) # Michael S. Branicky, Jan 10 2021
    
  • Python
    from itertools import product
    n = 4
    for p in product([0, 1], repeat=n): print(''.join(str(x) for x in p))
    # Peter Luschny, Jan 22 2024

Formula

a(n) = Sum_{i=0..m} d(i)*10^i, where Sum_{i=0..m} d(i)*2^i is the base 2 representation of n.
a(n) = (1/2)*Sum_{i>=0} (1-(-1)^floor(n/2^i))*10^i. - Benoit Cloitre, Nov 20 2001
a(n) = A097256(n)/9.
a(2n) = 10*a(n), a(2n+1) = a(2n)+1.
G.f.: 1/(1-x) * Sum_{k>=0} 10^k * x^(2^k)/(1+x^(2^k)) - for sequence as decimal integers. - Franklin T. Adams-Watters, Jun 16 2006
a(A000290(n)) = A001737(n). - Reinhard Zumkeller, Apr 25 2009
a(n) = Sum_{k>=0} A030308(n,k)*10^k. - Philippe Deléham, Oct 19 2011
For n > 0: A054055(a(n)) = 1. - Reinhard Zumkeller, Apr 25 2012
a(n) = Sum_{k=0..floor(log_2(n))} floor((Mod(n/2^k, 2)))*(10^k). - José de Jesús Camacho Medina, Jul 24 2014

A078248 Smallest multiple of n using only digits 0 and 9.

Original entry on oeis.org

9, 90, 9, 900, 90, 90, 9009, 9000, 9, 90, 99, 900, 9009, 90090, 90, 90000, 99909, 90, 99009, 900, 9009, 990, 990909, 9000, 900, 90090, 999, 900900, 9909909, 90, 999099, 900000, 99, 999090, 90090, 900, 999, 990090, 9009, 9000, 99999, 90090, 9909909
Offset: 1

Views

Author

Amarnath Murthy, Nov 23 2002

Keywords

Comments

a(n) = min{A097256(k): k > 0 and A097256(k) mod n = 0}. [Reinhard Zumkeller, Jan 10 2012]

Crossrefs

Programs

  • Haskell
    a078248 n = head [x | x <- tail a097256_list, mod x n == 0]
    -- Reinhard Zumkeller, Jan 10 2012
  • Mathematica
    With[{t=Flatten[Table[FromDigits[Join[{9},#]]&/@Tuples[{0,9},n],{n,0,6}]]},Flatten[Table[Select[t,Divisible[#,i]&,1],{i,50}]]] (* Harvey P. Dale, May 31 2014 *)

Extensions

More terms from Ray Chandler, Jul 12 2004

A169964 Numbers whose decimal expansion contains only 0's and 5's.

Original entry on oeis.org

0, 5, 50, 55, 500, 505, 550, 555, 5000, 5005, 5050, 5055, 5500, 5505, 5550, 5555, 50000, 50005, 50050, 50055, 50500, 50505, 50550, 50555, 55000, 55005, 55050, 55055, 55500, 55505, 55550, 55555, 500000, 500005, 500050, 500055, 500500, 500505, 500550, 500555
Offset: 1

Views

Author

N. J. A. Sloane, Aug 07 2010

Keywords

Crossrefs

Programs

  • Haskell
    a169964 n = a169964_list !! (n-1)
    a169964_list = map (* 5) a007088_list
    -- Reinhard Zumkeller, Jan 10 2012
  • Mathematica
    Map[FromDigits,Tuples[{0,5},6]] (* Paolo Xausa, Oct 30 2023 *)
  • PARI
    print1(0);for(d=1,5,for(n=2^(d-1),2^d-1,print1(", ");forstep(i=d-1,0,-1,print1((n>>i)%2*5)))) \\ Charles R Greathouse IV, Nov 16 2011
    

Formula

a(n+1) = Sum_{k>=0} A030308(n,k)*A093143(k+1). - Philippe Deléham, Oct 16 2011
a(n) = 5 * A007088(n-1).

A204093 Numbers whose set of base-10 digits is {0,6}.

Original entry on oeis.org

0, 6, 60, 66, 600, 606, 660, 666, 6000, 6006, 6060, 6066, 6600, 6606, 6660, 6666, 60000, 60006, 60060, 60066, 60600, 60606, 60660, 60666, 66000, 66006, 66060, 66066, 66600, 66606, 66660, 66666, 600000, 600006, 600060, 600066, 600600, 600606, 600660, 600666
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 10 2012

Keywords

Crossrefs

Programs

  • Haskell
    a204093 n = a204093_list !! n
    a204093_list = map (* 6) a007088_list
    
  • Mathematica
    Map[FromDigits,Tuples[{0,6},6]] (* Paolo Xausa, Oct 30 2023 *)
  • Python
    def a(n): return int(bin(n)[2:].replace('1', '6'))
    print([a(n) for n in range(40)]) # Michael S. Branicky, Jun 06 2021

Formula

a(n) = 6 * A007088(n).

A169965 Numbers whose decimal expansion contains only 0's and 2's.

Original entry on oeis.org

0, 2, 20, 22, 200, 202, 220, 222, 2000, 2002, 2020, 2022, 2200, 2202, 2220, 2222, 20000, 20002, 20020, 20022, 20200, 20202, 20220, 20222, 22000, 22002, 22020, 22022, 22200, 22202, 22220, 22222, 200000, 200002, 200020, 200022, 200200, 200202, 200220, 200222
Offset: 1

Views

Author

N. J. A. Sloane, Aug 07 2010

Keywords

Crossrefs

Programs

  • Haskell
    a169965 n = a169965_list !! (n-1)
    a169965_list = map (* 2) a007088_list
    -- Reinhard Zumkeller, Jan 10 2012
  • Mathematica
    Map[FromDigits,Tuples[{0,2},6]] (* Paolo Xausa, Oct 30 2023 *)
  • PARI
    print1(0);for(d=1,5,for(n=2^(d-1),2^d-1,print1(", ");forstep(i=d-1,0,-1,print1((n>>i)%2*2)))) \\ Charles R Greathouse IV, Nov 16 2011
    
  • PARI
    lista(N) = vector(N, i, fromdigits(binary(i-1)*2)); \\ Ruud H.G. van Tol, Oct 26 2024
    

Formula

a(n+1) = Sum_{k>=0} A030308(n,k)*A093136(k+1). - Philippe Deléham, Oct 16 2011
a(n) = 2 * A007088(n-1).

A169967 Numbers whose decimal expansion contains only 0's and 4's.

Original entry on oeis.org

0, 4, 40, 44, 400, 404, 440, 444, 4000, 4004, 4040, 4044, 4400, 4404, 4440, 4444, 40000, 40004, 40040, 40044, 40400, 40404, 40440, 40444, 44000, 44004, 44040, 44044, 44400, 44404, 44440, 44444, 400000, 400004, 400040, 400044, 400400, 400404, 400440, 400444
Offset: 1

Views

Author

N. J. A. Sloane, Aug 07 2010

Keywords

Crossrefs

Programs

  • Haskell
    a169967 n = a169967_list !! (n-1)
    a169967_list = map (* 4) a007088_list
    -- Reinhard Zumkeller, Jan 10 2012
  • Mathematica
    FromDigits/@Tuples[{0,4},6] (* Harvey P. Dale, Dec 21 2018 *)
  • PARI
    print1(0);for(d=1,5,for(n=2^(d-1),2^d-1,print1(", ");forstep(i=d-1,0,-1,print1((n>>i)%2*4)))) \\ Charles R Greathouse IV, Nov 16 2011
    

Formula

a(n+1) = Sum_{k>=0} A030308(n,k)*A093141(k+1). - Philippe Deléham, Oct 16 2011
a(n) = 4 * A007088(n-1).

A169966 Numbers whose decimal expansion contains only 0's and 3's.

Original entry on oeis.org

0, 3, 30, 33, 300, 303, 330, 333, 3000, 3003, 3030, 3033, 3300, 3303, 3330, 3333, 30000, 30003, 30030, 30033, 30300, 30303, 30330, 30333, 33000, 33003, 33030, 33033, 33300, 33303, 33330, 33333, 300000, 300003, 300030, 300033, 300300, 300303, 300330, 300333
Offset: 1

Views

Author

N. J. A. Sloane, Aug 07 2010

Keywords

Crossrefs

Programs

  • Haskell
    a169966 n = a169966_list !! (n-1)
    a169966_list = map (* 3) a007088_list
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Mathematica
    Map[FromDigits,Tuples[{0,3},6]] (* Paolo Xausa, Oct 30 2023 *)
  • PARI
    print1(0);for(d=1,5,for(n=2^(d-1),2^d-1,print1(", ");forstep(i=d-1,0,-1,print1((n>>i)%2*3)))) \\ Charles R Greathouse IV, Nov 16 2011
    
  • Python
    def a(n): return 3*int(bin(n)[2:])
    print([a(n) for n in range(40)]) # Michael S. Branicky, Mar 30 2021

Formula

a(n+1) = Sum_{k>=0} A030308(n,k)*A093138(k+1). - Philippe Deléham, Oct 16 2011
a(n) = 3 * A007088(n-1).

A204094 Numbers whose set of base 10 digits is {0,7}.

Original entry on oeis.org

0, 7, 70, 77, 700, 707, 770, 777, 7000, 7007, 7070, 7077, 7700, 7707, 7770, 7777, 70000, 70007, 70070, 70077, 70700, 70707, 70770, 70777, 77000, 77007, 77070, 77077, 77700, 77707, 77770, 77777, 700000, 700007, 700070, 700077, 700700, 700707, 700770, 700777
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 10 2012

Keywords

Crossrefs

Programs

  • Haskell
    a204094 n = a204094_list !! n
    a204094_list = map (* 7) a007088_list
  • Mathematica
    FromDigits/@Tuples[{0,7},6] (* Harvey P. Dale, Mar 03 2021 *)

Formula

a(n) = 7 * A007088(n).

A204095 Numbers whose base 10 digits are a subset of {0, 8}.

Original entry on oeis.org

0, 8, 80, 88, 800, 808, 880, 888, 8000, 8008, 8080, 8088, 8800, 8808, 8880, 8888, 80000, 80008, 80080, 80088, 80800, 80808, 80880, 80888, 88000, 88008, 88080, 88088, 88800, 88808, 88880, 88888, 800000, 800008, 800080, 800088, 800800, 800808, 800880, 800888
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 10 2012

Keywords

Crossrefs

Programs

  • Haskell
    a204095 n = a204095_list !! n
    a204095_list = map (* 8) a007088_list
    
  • Maple
    f:= proc(n) local L; L:= convert(n,base,2); add(8*L[i]*10^(i-1),i=1..nops(L)) end proc:
    seq(f(n),n=0..100); # Robert Israel, Jul 28 2014
  • Mathematica
    Table[8 FromDigits[IntegerDigits[n, 2]], {n, 0, 39}] (* Alonso del Arte, Jan 10 2012 *)
  • PARI
    a(n)=8*subst(Pol(binary(n)), x, 10);
    for(n=0, 20, print1(a(n), ", ")) \\ Felix Fröhlich, Jul 26 2014

Formula

a(n) = 8 * A007088(n).

Extensions

Definition corrected by M. F. Hasler, Feb 08 2020
Showing 1-9 of 9 results.