cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097613 a(n) = binomial(2n-3,n-1) + binomial(2n-2,n-2).

Original entry on oeis.org

1, 2, 7, 25, 91, 336, 1254, 4719, 17875, 68068, 260338, 999362, 3848222, 14858000, 57500460, 222981435, 866262915, 3370764540, 13135064250, 51250632510, 200205672810, 782920544640, 3064665881940, 12007086477750, 47081501377326, 184753963255176, 725510446350004
Offset: 1

Views

Author

David Callan, Sep 20 2004

Keywords

Comments

a(n) is the number of Dyck (2n-1)-paths with maximum pyramid size = n. A pyramid in a Dyck path is a maximal subpath of the form k upsteps immediately followed by k downsteps and its size is k.
a(n) is the total number of runs of peaks in all Dyck (n+1)-paths. A run of peaks is a maximal subpath of the form (UD)^k with k>=1. For example, a(2)=7 because the 5 Dyck 3-paths contain a total of 7 runs of peaks (in uppercase type): uuUDdd, uUDUDd, uUDdUD, UDuUDd, UDUDUD. - David Callan, Jun 07 2006
Binomial transform of A113682. - Paul Barry, Aug 21 2007
If Y is a fixed 2-subset of a (2n+1)-set X then a(n+1) is the number of n-subsets of X intersecting Y. - Milan Janjic, Oct 21 2007
Equals the Catalan sequence, A000108, convolved with A051924 prefaced with a 1: (1, 1, 4, 14, 50, ...). - Gary W. Adamson, May 15 2009
Central terms of triangle A209561. - Reinhard Zumkeller, Dec 26 2012
Also the number of compositions of 2*(n-1) in which the odd parts appear as many times in odd as in even positions. - Alois P. Heinz, May 26 2018

Examples

			a(2) = 2 because UUDDUD and UDUUDD each have maximum pyramid size = 2.
		

Crossrefs

Same as A024482 except for first term.

Programs

  • GAP
    Flat(List([1..30], n->Binomial(2*n-3, n-1)+Binomial(2*n-2, n-2))); # Stefano Spezia, Oct 27 2018
    
  • Haskell
    a097613 n = a209561 (2 * n - 1) n  -- Reinhard Zumkeller, Dec 26 2012
    
  • Magma
    [((3*n-2)*Catalan(n-1)+0^(n-1))/2: n in [1..40]]; // G. C. Greubel, Apr 04 2024
  • Maple
    Z:=(1-z-sqrt(1-4*z))/sqrt(1-4*z)/2: Zser:=series(Z, z=0, 32): seq (ceil(coeff(Zser, z, n)), n=1..22); # Zerinvary Lajos, Jan 16 2007
    a := n -> `if`(n=1, 1, (2-3*n)/(4-8*n)*binomial(2*n, n)):
    seq(a(n), n=1..27); # Peter Luschny, Sep 06 2014
  • Mathematica
    a[1]=1; a[n_] := (3n-2)(2n-3)!/(n!(n-2)!); Array[a, 27] (* Jean-François Alcover, Oct 27 2018 *)
  • PARI
    a(n)=binomial(2*n-3,n-1)+binomial(2*n-2,n-2) \\ Charles R Greathouse IV, Aug 05 2013
    
  • Sage
    @CachedFunction
    def A097613(n):
        if n < 3: return n
        return (6*n-4)*(2*n-3)*A097613(n-1)/(n*(3*n-5))
    [A097613(n) for n in (1..27)] # Peter Luschny, Sep 06 2014
    

Formula

G.f.: (x-1)*(1 - 1/sqrt(1-4*x))/2.
a(n) = ceiling(A051924(n)/2). - Zerinvary Lajos, Jan 16 2007
Integral representation as n-th moment of a signed weight function W(x) = W_a(x) + W_c(x), where W_a(x) = Dirac(x)/2 is the discrete (atomic) part, and W_c(x) = (1/(2*Pi))*((x-1))*sqrt(1/(x*(4-x))) is the continuous part of W(x) defined on (0,4): a(n) = Integral_{x=-eps..eps} x^n*W_a(x) + Integral_{x=0..4} x^n*W_c(x) for any eps > 0, n >= 0. W_c(0) = -infinity, W_c(1) = 0 and W_c(4) = infinity. For 0 < x < 1, W_c(x) < 0, and for 1 < x < 4, W_c(x) > 0. - Karol A. Penson, Aug 05 2013
From Peter Luschny, Sep 06 2014: (Start)
a(n) = ((2-3*n)/(4-8*n))*binomial(2*n,n) for n >= 2.
D-finite with recurrence: a(n) = (6*n-4)*(2*n-3)*a(n-1)/(n*(3*n-5)) for n >= 3. (End)
a(n) ~ 3*2^(2*n-3)/sqrt(n*Pi). - Stefano Spezia, May 09 2023
From G. C. Greubel, Apr 04 2024: (Start)
a(n) = (1/2)*( (3*n-2)*A000108(n-1) + [n=1]).
E.g.f.: (1/2)*(-1+x + exp(2*x)*((1-x)*BesselI(0,2*x) + x*BesselI(1,2*x) )). (End)