cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A013715 a(n) = 10^(2*n+1).

Original entry on oeis.org

10, 1000, 100000, 10000000, 1000000000, 100000000000, 10000000000000, 1000000000000000, 100000000000000000, 10000000000000000000, 1000000000000000000000, 100000000000000000000000, 10000000000000000000000000, 1000000000000000000000000000, 100000000000000000000000000000
Offset: 0

Views

Author

Keywords

Comments

Bisection of A011557 (powers of 10). - Michel Marcus, Jan 17 2016

Crossrefs

Programs

Formula

From Philippe Deléham, Nov 25 2008: (Start)
G.f.: 10/(1-100*x).
a(n) = 100*a(n-1), n>0; a(0)=10. (End)
From Elmo R. Oliveira, Aug 26 2024 (Start)
E.g.f.: 10*exp(100*x).
a(n) = 10*A098608(n) = A011557(A005408(n)) = A013747(n)/10^(n+1). (End)

A063010 Carryless binary square of n; also Moser-de Bruijn sequence written in binary.

Original entry on oeis.org

0, 1, 100, 101, 10000, 10001, 10100, 10101, 1000000, 1000001, 1000100, 1000101, 1010000, 1010001, 1010100, 1010101, 100000000, 100000001, 100000100, 100000101, 100010000, 100010001, 100010100, 100010101, 101000000, 101000001
Offset: 0

Views

Author

Henry Bottomley, Jul 03 2001

Keywords

Comments

Numbers that are sums of distinct powers of 100. - David Wasserman, Feb 26 2008

Examples

			a(11)=1000101, since 11 in binary is 1011 and binary carryless sum of 1011000, 0, 10110 and 1011 is 1000101.
		

Crossrefs

Cf. Moser-de Bruijn sequence A000695, carryless decimal squares A059729, pre-carry binary squares A063009.

Programs

  • Mathematica
    With[{k = 100}, Map[FromDigits[#, k] &, Tuples[{0, 1}, 5]]] (* Michael De Vlieger, Oct 29 2022 *)
  • PARI
    a(n) = fromdigits(binary(n),100); \\ Ruud H.G. van Tol, Dec 05 2022
    
  • Python
    def A063010(n): return int(bin(int(bin(n)[2:],4))[2:]) # Chai Wah Wu, Apr 09 2025

Formula

a(n) = A062033(n)/10, i.e., with final zero removed.
a(n) = Sum_{k>=0} A030308(n,k)*A098608(k). - Philippe Deléham, Oct 15 2011
G.f.: (1/(1 - x))*Sum_{k>=0} 100^k*x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Jun 04 2017

Extensions

More terms from David Wasserman, Feb 26 2008

A165800 Powers of 50.

Original entry on oeis.org

1, 50, 2500, 125000, 6250000, 312500000, 15625000000, 781250000000, 39062500000000, 1953125000000000, 97656250000000000, 4882812500000000000, 244140625000000000000, 12207031250000000000000, 610351562500000000000000, 30517578125000000000000000, 1525878906250000000000000000
Offset: 0

Views

Author

Jaroslav Krizek, Sep 27 2009

Keywords

Comments

Same as Pisot sequences E(1, 50), L(1, 50), P(1, 50), T(1, 50). Essentially same as Pisot sequences E(50, 2500), L(50, 2500), P(50, 2500), T(50, 2500). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 50-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011

Crossrefs

Programs

Formula

G.f.: 1/(1-50*x).
a(n) = 50^n; a(n) = 50*a(n-1) a(0)=1. - Vincenzo Librandi, Nov 21 2010
From G. C. Greubel, Apr 08 2016: (Start)
a(n) = 2^n * 5^(2*n) = A000079(n)*A000351(n)^2.
a(n) = 5^n * 10^n = A000351(n)*A011557(n). (End)
From Elmo R. Oliveira, Jul 08 2025: (Start)
E.g.f.: exp(50*x).
a(n) = A098608(n)/A000079(n). (End)

A368418 Numbers X such that X^2 + Y^2 = 10^(2*k) + 1, with X > Y > 0 and k is the decimal digit length of X-1.

Original entry on oeis.org

10, 76, 100, 980, 1000, 8824, 10000, 76249, 87551, 98020, 100000, 753424, 766424, 999800, 1000000, 7209049, 7241380, 8220640, 8463640, 9801980, 9879740, 9990280, 10000000, 77053825, 78173720, 80404255, 83754376, 84711551, 86600176, 90880001, 93094625, 93728480
Offset: 1

Views

Author

A.H.M. Smeets, Dec 24 2023

Keywords

Comments

The values X and Y are used in finding A368416.
The number of terms for a given k is 2^(f-1), where f = A119704(2*k) is the number of prime factors of 10^(2*k) + 1.

Examples

			10 is a term since X = 10, Y = 1, k = 1 and 10^2 + 1^2 = 101.
76 is a term since X = 76, Y = 65, k = 2 and 76^2 + 65^2 = 10001.
980 is a term since X = 980, Y = 199, k = 3 and 980^2 + 199^2 = 1000001.
		

References

  • Frits Beukers, "Getallen - Een inleiding" (In Dutch), Epsilon Uitgaven, Amsterdam (2015).

Crossrefs

A098609 a(n) = 100^n - 1.

Original entry on oeis.org

0, 99, 9999, 999999, 99999999, 9999999999, 999999999999, 99999999999999, 9999999999999999, 999999999999999999, 99999999999999999999, 9999999999999999999999, 999999999999999999999999, 99999999999999999999999999, 9999999999999999999999999999, 999999999999999999999999999999
Offset: 0

Views

Author

Henry Bottomley, Sep 17 2004

Keywords

Crossrefs

Programs

Formula

a(n) = 100*a(n-1) + 99 = A002283(2*n) = A098608(n) - 1.
From Chai Wah Wu, Sep 22 2016: (Start)
a(n) = 101*a(n-1) - 100*a(n-2) for n > 1.
G.f.: 99*x/((x - 1)*(100*x - 1)). (End)
E.g.f.: exp(x)*(exp(99*x) - 1). - Stefano Spezia, Aug 05 2024
a(n) = A002283(n)*A062397(n). - Elmo R. Oliveira, Sep 09 2024

A346460 Square array read by downward antidiagonals in which row n lists all numbers k for which all positive integers cannot be colored with two colors without any positive integer x being the same color as n*x or k*x (for n >= 2).

Original entry on oeis.org

4, 16, 9, 64, 81, 2, 256, 729, 8, 25, 1024, 6561, 16, 625, 36, 4096, 59049, 32, 15625, 1296, 49, 16384, 531441, 128, 390625, 46656, 2401, 4, 65536, 4782969, 256, 9765625, 1679616, 117649, 16, 3, 262144, 43046721, 512, 244140625, 60466176, 5764801, 64, 27, 100
Offset: 2

Views

Author

M. Eren Kesim, Aug 25 2021

Keywords

Comments

Row n lists all positive integers k for which there exists at least one pair of positive integers (x, y) such that n^x = k^y and x+y is odd.
If n is an element of A007916, then row n lists all perfect powers of n^2.
A positive integer k is in row n if and only if there exists a positive integer x for which A052410(n)^x = k and A007814(A052409(n)) != A007814(x).

Examples

			Table begins:
     4,    16,      64,       256,        1024,          4096,           16384, ...
     9,    81,     729,      6561,       59049,        531441,         4782969, ...
     2,     8,      16,        32,         128,           256,             512, ...
    25,   625,   15625,    390625,     9765625,     244140625,      6103515625, ...
    36,  1296,   46656,   1679616,    60466176,    2176782336,      7836416409, ...
    49,  2401,  117649,   5764801,   282475249,   13841287201,    678223072849, ...
     4,    16,      64,       256,        1024,          4096,           16384, ...
     3,    27,      81,       243,        2187,          6561,           19683, ...
   100, 10000, 1000000, 100000000, 10000000000, 1000000000000, 100000000000000, ...
		

Crossrefs

Programs

  • Python
    # See links.

A013792 a(n) = 10^(4*n + 1).

Original entry on oeis.org

10, 100000, 1000000000, 10000000000000, 100000000000000000, 1000000000000000000000, 10000000000000000000000000, 100000000000000000000000000000, 1000000000000000000000000000000000, 10000000000000000000000000000000000000, 100000000000000000000000000000000000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A011557.

Programs

Formula

a(n) = 10000*a(n-1). - Wesley Ivan Hurt, Apr 19 2023
From Elmo R. Oliveira, Aug 30 2024: (Start)
G.f.: 10/(1 - 10000*x).
E.g.f.: 10*exp(10000*x).
a(n) = A011557(A016813(n)) = A098608(n)*A013715(n) = A013776(n)*A013782(n). (End)

A013793 a(n) = 10^(4*n + 3).

Original entry on oeis.org

1000, 10000000, 100000000000, 1000000000000000, 10000000000000000000, 100000000000000000000000, 1000000000000000000000000000, 10000000000000000000000000000000, 100000000000000000000000000000000000, 1000000000000000000000000000000000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [10^(4*n+3): n in [0..10]]; // Vincenzo Librandi, Jun 28 2011
    
  • Mathematica
    10^(4*Range[0, 10] + 3) (* or *)
    NestList[10000*# &, 1000, 10] (* Paolo Xausa, Jul 21 2025 *)
  • Maxima
    makelist(10^(4*n+3),n,0,20); /* Martin Ettl, Oct 21 2012 */

Formula

From Elmo R. Oliveira, Aug 30 2024: (Start)
G.f.: 1000/(1 - 10000*x).
E.g.f.: 1000*exp(10000*x).
a(n) = 10000*a(n-1) for n > 0.
a(n) = A011557(A004767(n)) = A013715(n)*A098608(n+1) = A013777(n)*A013783(n). (End)

A133851 Sloping binary representation of powers of 4 (A000302), slope = -1 .

Original entry on oeis.org

1, 0, 0, 4, 0, 0, 16, 0, 0, 64, 0, 0, 256, 0, 0, 1024, 0, 0, 4096, 0, 0, 16384, 0, 0, 65536, 0, 0, 262144, 0, 0, 1048576, 0, 0, 4194304, 0, 0, 16777216, 0, 0, 67108864, 0, 0, 268435456, 0, 0, 1073741824, 0, 0, 4294967296, 0, 0, 17179869184, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Jan 06 2008

Keywords

Examples

			When powers of 4 are written in binary (see A098608), under each other as:
0000000000001 (1)
0000000000100 (4)
0000000010000 (16)
0000001000000 (64)
0000100000000 (256)
0010000000000 (1024)
1000000000000 (4096)
and one collects their bits from the column=0 to NW-direction (from the least to the most significant end), one gets 1 (1), 00 (0), 000 (0), 0100 (4), 00000 (0), 000000 (0), 0010000 (16), etc. (see 0105033 for similar transformation done on nonnegative integers)
		

Crossrefs

Cf. A037095, A077957, A105033, A000302, A098608, A102370(sloping binary numbers).

Formula

a(3n) = A000302(n), a(3n+1) = a(3n+2) = 0. - Alois P. Heinz, Dec 10 2020

A177019 a(n) = 3*10^(2*n) + 3*10^n + 1.

Original entry on oeis.org

7, 331, 30301, 3003001, 300030001, 30000300001, 3000003000001, 300000030000001, 30000000300000001, 3000000003000000001, 300000000030000000001, 30000000000300000000001, 3000000000003000000000001, 300000000000030000000000001, 30000000000000300000000000001, 3000000000000003000000000000001
Offset: 0

Views

Author

Vincenzo Librandi, May 24 2010

Keywords

Examples

			For n=0, a(0)=7; n=1, a(1)=3*10^2+3*10+1=331.
		

Crossrefs

Programs

  • Magma
    [(3*10^(2*n)+3*10^n+1): n in [0..15]];
  • Mathematica
    CoefficientList[Series[(7 - 446 x + 1330 x^2)/((1 - x)(1 - 10 x) (1 - 100 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Aug 19 2014 *)

Formula

G.f.: (7-446*x+1330*x^2)/((1-x)*(1-10*x)*(1-100*x)). - Vincenzo Librandi, Aug 19 2014
E.g.f.: exp(x)*(1 + 3*exp(9*x) + 3*exp(99*x)). - Stefano Spezia, Aug 05 2024
Showing 1-10 of 12 results. Next