A013715
a(n) = 10^(2*n+1).
Original entry on oeis.org
10, 1000, 100000, 10000000, 1000000000, 100000000000, 10000000000000, 1000000000000000, 100000000000000000, 10000000000000000000, 1000000000000000000000, 100000000000000000000000, 10000000000000000000000000, 1000000000000000000000000000, 100000000000000000000000000000
Offset: 0
A063010
Carryless binary square of n; also Moser-de Bruijn sequence written in binary.
Original entry on oeis.org
0, 1, 100, 101, 10000, 10001, 10100, 10101, 1000000, 1000001, 1000100, 1000101, 1010000, 1010001, 1010100, 1010101, 100000000, 100000001, 100000100, 100000101, 100010000, 100010001, 100010100, 100010101, 101000000, 101000001
Offset: 0
a(11)=1000101, since 11 in binary is 1011 and binary carryless sum of 1011000, 0, 10110 and 1011 is 1000101.
- Michael De Vlieger, Table of n, a(n) for n = 0..8191
- David Applegate, Marc LeBrun and N. J. A. Sloane, Carryless Arithmetic (I): The Mod 10 Version
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 45.
Cf. Moser-de Bruijn sequence
A000695, carryless decimal squares
A059729, pre-carry binary squares
A063009.
-
With[{k = 100}, Map[FromDigits[#, k] &, Tuples[{0, 1}, 5]]] (* Michael De Vlieger, Oct 29 2022 *)
-
a(n) = fromdigits(binary(n),100); \\ Ruud H.G. van Tol, Dec 05 2022
-
def A063010(n): return int(bin(int(bin(n)[2:],4))[2:]) # Chai Wah Wu, Apr 09 2025
Original entry on oeis.org
1, 50, 2500, 125000, 6250000, 312500000, 15625000000, 781250000000, 39062500000000, 1953125000000000, 97656250000000000, 4882812500000000000, 244140625000000000000, 12207031250000000000000, 610351562500000000000000, 30517578125000000000000000, 1525878906250000000000000000
Offset: 0
-
[50^n: n in [0..20]]; // Vincenzo Librandi, Nov 21 2010
-
50^Range[0, 20] (* Paolo Xausa, Jul 09 2025 *)
-
A165800(n):=50^n$
makelist(A165800(n),n,0,30); /* Martin Ettl, Nov 06 2012 */
-
a(n)=50^n \\ Charles R Greathouse IV, Jun 19 2015
-
powers(50,8) \\ Charles R Greathouse IV, Jun 19 2015
A368418
Numbers X such that X^2 + Y^2 = 10^(2*k) + 1, with X > Y > 0 and k is the decimal digit length of X-1.
Original entry on oeis.org
10, 76, 100, 980, 1000, 8824, 10000, 76249, 87551, 98020, 100000, 753424, 766424, 999800, 1000000, 7209049, 7241380, 8220640, 8463640, 9801980, 9879740, 9990280, 10000000, 77053825, 78173720, 80404255, 83754376, 84711551, 86600176, 90880001, 93094625, 93728480
Offset: 1
10 is a term since X = 10, Y = 1, k = 1 and 10^2 + 1^2 = 101.
76 is a term since X = 76, Y = 65, k = 2 and 76^2 + 65^2 = 10001.
980 is a term since X = 980, Y = 199, k = 3 and 980^2 + 199^2 = 1000001.
- Frits Beukers, "Getallen - Een inleiding" (In Dutch), Epsilon Uitgaven, Amsterdam (2015).
- A.H.M. Smeets, Table of n, a(n) for n = 1..67
- T. Granlund, Factors of 10^n + 1.
- Alf van der Poorten, The Hermite-Serret Algorithm and 12^2 + 33^2. In: Lam, KY., Shparlinski, I., Wang, H., Xing, C. (eds) Cryptography and Computational Number Theory. Progress in Computer Science and Applied Logic, vol 20. Birkhäuser, Basel.
A098609
a(n) = 100^n - 1.
Original entry on oeis.org
0, 99, 9999, 999999, 99999999, 9999999999, 999999999999, 99999999999999, 9999999999999999, 999999999999999999, 99999999999999999999, 9999999999999999999999, 999999999999999999999999, 99999999999999999999999999, 9999999999999999999999999999, 999999999999999999999999999999
Offset: 0
A346460
Square array read by downward antidiagonals in which row n lists all numbers k for which all positive integers cannot be colored with two colors without any positive integer x being the same color as n*x or k*x (for n >= 2).
Original entry on oeis.org
4, 16, 9, 64, 81, 2, 256, 729, 8, 25, 1024, 6561, 16, 625, 36, 4096, 59049, 32, 15625, 1296, 49, 16384, 531441, 128, 390625, 46656, 2401, 4, 65536, 4782969, 256, 9765625, 1679616, 117649, 16, 3, 262144, 43046721, 512, 244140625, 60466176, 5764801, 64, 27, 100
Offset: 2
Table begins:
4, 16, 64, 256, 1024, 4096, 16384, ...
9, 81, 729, 6561, 59049, 531441, 4782969, ...
2, 8, 16, 32, 128, 256, 512, ...
25, 625, 15625, 390625, 9765625, 244140625, 6103515625, ...
36, 1296, 46656, 1679616, 60466176, 2176782336, 7836416409, ...
49, 2401, 117649, 5764801, 282475249, 13841287201, 678223072849, ...
4, 16, 64, 256, 1024, 4096, 16384, ...
3, 27, 81, 243, 2187, 6561, 19683, ...
100, 10000, 1000000, 100000000, 10000000000, 1000000000000, 100000000000000, ...
A013792
a(n) = 10^(4*n + 1).
Original entry on oeis.org
10, 100000, 1000000000, 10000000000000, 100000000000000000, 1000000000000000000000, 10000000000000000000000000, 100000000000000000000000000000, 1000000000000000000000000000000000, 10000000000000000000000000000000000000, 100000000000000000000000000000000000000000
Offset: 0
A013793
a(n) = 10^(4*n + 3).
Original entry on oeis.org
1000, 10000000, 100000000000, 1000000000000000, 10000000000000000000, 100000000000000000000000, 1000000000000000000000000000, 10000000000000000000000000000000, 100000000000000000000000000000000000, 1000000000000000000000000000000000000000
Offset: 0
-
[10^(4*n+3): n in [0..10]]; // Vincenzo Librandi, Jun 28 2011
-
10^(4*Range[0, 10] + 3) (* or *)
NestList[10000*# &, 1000, 10] (* Paolo Xausa, Jul 21 2025 *)
-
makelist(10^(4*n+3),n,0,20); /* Martin Ettl, Oct 21 2012 */
A133851
Sloping binary representation of powers of 4 (A000302), slope = -1 .
Original entry on oeis.org
1, 0, 0, 4, 0, 0, 16, 0, 0, 64, 0, 0, 256, 0, 0, 1024, 0, 0, 4096, 0, 0, 16384, 0, 0, 65536, 0, 0, 262144, 0, 0, 1048576, 0, 0, 4194304, 0, 0, 16777216, 0, 0, 67108864, 0, 0, 268435456, 0, 0, 1073741824, 0, 0, 4294967296, 0, 0, 17179869184, 0, 0
Offset: 0
When powers of 4 are written in binary (see A098608), under each other as:
0000000000001 (1)
0000000000100 (4)
0000000010000 (16)
0000001000000 (64)
0000100000000 (256)
0010000000000 (1024)
1000000000000 (4096)
and one collects their bits from the column=0 to NW-direction (from the least to the most significant end), one gets 1 (1), 00 (0), 000 (0), 0100 (4), 00000 (0), 000000 (0), 0010000 (16), etc. (see 0105033 for similar transformation done on nonnegative integers)
A177019
a(n) = 3*10^(2*n) + 3*10^n + 1.
Original entry on oeis.org
7, 331, 30301, 3003001, 300030001, 30000300001, 3000003000001, 300000030000001, 30000000300000001, 3000000003000000001, 300000000030000000001, 30000000000300000000001, 3000000000003000000000001, 300000000000030000000000001, 30000000000000300000000000001, 3000000000000003000000000000001
Offset: 0
For n=0, a(0)=7; n=1, a(1)=3*10^2+3*10+1=331.
-
[(3*10^(2*n)+3*10^n+1): n in [0..15]];
-
CoefficientList[Series[(7 - 446 x + 1330 x^2)/((1 - x)(1 - 10 x) (1 - 100 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Aug 19 2014 *)
Showing 1-10 of 12 results.
Comments