cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A020557 Number of oriented multigraphs on n labeled arcs (with loops).

Original entry on oeis.org

1, 2, 15, 203, 4140, 115975, 4213597, 190899322, 10480142147, 682076806159, 51724158235372, 4506715738447323, 445958869294805289, 49631246523618756274, 6160539404599934652455, 846749014511809332450147, 128064670049908713818925644
Offset: 0

Views

Author

Gilbert Labelle (gilbert(AT)lacim.uqam.ca), Simon Plouffe

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Cf. A070906. Bisection of Bell numbers A000110.
Cf. A099977.

Programs

  • Magma
    [Bell(2*n): n in [0..20]]; // Vincenzo Librandi, Feb 05 2017
    
  • Mathematica
    BellB[2 Range[0,20]] (* Harvey P. Dale, Jul 03 2021 *)
  • PARI
    for(n=0,50,print1(ceil(sum(i=0,1000,i^(2*n)/(i)!)/exp(1)),","))
    
  • Python
    from itertools import accumulate, islice
    def A020557_gen(): # generator of terms
        yield 1
        blist, b = (1,), 1
        while True:
            for _ in range(2):
                blist = list(accumulate(blist, initial=(b:=blist[-1])))
            yield b
    A020557_list = list(islice(A020557_gen(),30)) # Chai Wah Wu, Jun 22 2022
  • Sage
    [bell_number(2*n) for n in range(0, 17)] # Zerinvary Lajos, May 14 2009
    

Formula

a(n) = Bell(2*n) = A000110(2*n). - Vladeta Jovovic, Feb 02 2003
a(n) = exp(-1)*Sum_{k>=0} k^(2n)/k!. - Benoit Cloitre, May 19 2002
E.g.f.: exp(x*(d_z)^2)*(exp(exp(z)-1))|_{z=0}, with the derivative operator d_z := d/dz. Adapted from eqs.(14) and (15) of the 1999 C. M. Bender reference given in A000110.
E.g.f.: exp(-1)*Sum_{n>=0}exp(n^2*x)/n!. - Vladeta Jovovic, Aug 24 2006

A208301 T(n,k)=Number of n X k nonnegative integer arrays with new values 0 upwards introduced in row major order and no element equal to any horizontal or antidiagonal neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

1, 1, 2, 2, 5, 5, 5, 42, 52, 15, 15, 602, 2906, 877, 52, 52, 12840, 373780, 433252, 21147, 203, 203, 373780, 87852626, 656404264, 113503692, 678570, 877, 877, 14050312, 33093356640, 2227156082842, 2475181138384, 46538017584, 27644437, 4140
Offset: 1

Views

Author

R. H. Hardin, Feb 25 2012

Keywords

Examples

			Table starts
....1..........1.................2.....................5
....2..........5................42...................602
....5.........52..............2906................373780
...15........877............433252.............656404264
...52......21147.........113503692.........2475181138384
..203.....678570.......46538017584.....17131843186425504
..877...27644437....27700815674032.196551307092757144384
.4140.1382958545.22702140562948192
Some solutions for n=4 k=3
..0..1..0....0..1..0....0..1..0....0..1..0....0..1..0....0..1..2....0..1..0
..0..1..0....0..1..0....0..1..0....0..1..0....2..3..0....0..3..0....0..1..0
..0..1..0....0..2..1....0..1..0....0..1..0....0..2..0....0..1..0....2..1..0
..0..2..1....0..2..0....0..1..0....0..1..2....0..1..0....0..3..0....2..1..2
		

Crossrefs

Columns 1..6 are A000110, A099977(n-1), A208297, A208298, A208299, A208300
Main diagonal is A361450.
Cf. A207868.

A308647 a(n) = exp(1) * Sum_{k>=0} (-1)^k*k^(2*n+1)/k!.

Original entry on oeis.org

-1, 1, -2, -9, 267, -2180, -50533, 1966797, 8638718, -2540956509, 27172288399, 5592543175252, -168392610536153, -20819319685262839, 1122009166836993406, 127595724180314195839, -9985347479130060737373, -1244077225312583088164916, 120225865637787689310572899, 18462990063073814590636032245
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 13 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Exp[1] Sum[(-1)^k k^(2 n + 1)/k!, {k, 0, Infinity}], {n, 0, 19}]
    Table[BellB[2 n + 1, -1], {n, 0, 19}]

Formula

a(n) = Sum_{k=0..2*n+1} (-1)^k*Stirling2(2*n+1,k).
a(n) = A000587(2*n+1).

A308865 a(n) = Sum_{k>=0} k^(2*n+1)/2^(k+1).

Original entry on oeis.org

1, 13, 541, 47293, 7087261, 1622632573, 526858348381, 230283190977853, 130370767029135901, 92801587319328411133, 81124824998504073881821, 85438451336745709294580413, 106697365438475775825583498141, 155897763918621623249276226253693, 263478385263023690020893329044576861
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 29 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[k^(2 n + 1)/2^(k + 1), {k, 0, Infinity}], {n, 0, 14}]
    Table[Sum[k! StirlingS2[2 n + 1, k], {k, 0, 2 n + 1}], {n, 0, 14}]

Formula

a(n) = Sum_{k=0..2*n+1} k!*Stirling2(2*n+1,k).
a(n) = A000670(2*n+1).
a(n) ~ sqrt(Pi) * 2^(2*n + 1) * n^(2*n + 3/2) / (exp(2*n) * (log(2))^(2*n + 2)). - Vaclav Kotesovec, Sep 25 2019
Showing 1-4 of 4 results.