cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A033504 a(n)/4^n is the expected number of tosses of a coin required to obtain n+1 heads or n+1 tails.

Original entry on oeis.org

1, 10, 66, 372, 1930, 9516, 45332, 210664, 960858, 4319100, 19188796, 84438360, 368603716, 1598231992, 6889682280, 29551095248, 126193235194, 536799072924, 2275560109868, 9616650989560, 40527780684972, 170368957887656, 714556104675736, 2990728476330672
Offset: 0

Views

Author

Michael Ulm (ulm(AT)mathematik.uni-ulm.de)

Keywords

Comments

The number of rooted two-vertex n-edge maps in the plane (planar with a distinguished outside face). - Valery A. Liskovets, Mar 17 2005

Examples

			From _Jeremy Tan_, Mar 13 2018: (Start)
For n=1 the sequences of flips ending at two heads or two tails are:
HH, TT (probability 1/4 each)
HTH, HTT, THH, THT (1/8 each)
The expected number of flips is 2*2*1/4 + 3*4*1/8 = 10/4 = a(1)/4^1. (End)
		

References

  • M. Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, SIAM, 1990; see pp. 127-129.
  • V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.

Crossrefs

Programs

  • Magma
    [(n+1)*(2^(2*n+1)-Binomial(2*n+1,n+1)): n in [0..25]]; // Vincenzo Librandi, Jun 09 2011
  • Mathematica
    a[n_]:=(n+1)*(2^(2*n+1)-Binomial[2*n+1,n+1])
    a /@ Range[0,50] (* Julien Kluge, Jul 21 2016 *)

Formula

With a different offset: Sum_{j=0..n} Sum_{k=0..n} binomial(n, j)*binomial(n, k)*min(j, k) = n*2^(n-1) + (n/2)*binomial(2*n, n). [see Klamkin]
a(n-1) = 4^(n-1)*b(n, n), where b(n, m) = b(n-1, m)/2 + b(n, m-1)/2 + 1; b(n, 0)=b(0, n)=0.
a(n) = Sum_{k=0..n, l=0..n} 2^(2n - k - l) binomial(k+l, k).
a(n) = (2n+1)*Sum_{0<=i,j<=n} binomial(2n, i+j)/(i+j+1). - Benoit Cloitre, Mar 05 2005
a(n) = (n+1)*(2^(2*n+1) - binomial(2*n+1,n+1)). - Vladeta Jovovic, Aug 23 2007
n*a(n) + 6*(-2*n+1)*a(n-1) + 48*(n-1)*a(n-2) + 32*(-2*n+3)*a(n-3) = 0. - R. J. Mathar, Dec 22 2013
a(n) ~ 2^(2*n+1)*n. - Ilya Gutkovskiy, Jul 21 2016

Extensions

Name corrected by Jeremy Tan, Mar 13 2018

A297151 a(n) = Sum_{i=0..n} Sum_{j=0..n} Sum_{k=0..n} binomial(n,i)*binomial(n,j)*binomial(n,k)*max(i,j,k).

Original entry on oeis.org

0, 7, 100, 1128, 11552, 112160, 1052544, 9646336, 86877184, 772010496, 6787635200, 59163619328, 512002867200, 4404129513472, 37687664508928, 321065313239040, 2724508666953728, 23040146455789568, 194245982204461056, 1633162428477865984, 13697353473127874560
Offset: 0

Views

Author

Ognjen Dragoljevic, Dec 26 2017

Keywords

Comments

The given closed-form formula is provable.

Crossrefs

Analogous nested sum with only two levels: A100511, and with only one level: A001787.

Programs

  • Mathematica
    Table[n*2^(3n-1)+3n*2^(n-2) Binomial[2n,n],{n,0,20}] (* Harvey P. Dale, Nov 24 2018 *)

Formula

a(n) = n*2^(3*n-1) + 3*n*2^(n-2)*binomial(2*n, n).
Showing 1-2 of 2 results.