cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A000346 a(n) = 2^(2*n+1) - binomial(2*n+1, n+1).

Original entry on oeis.org

1, 5, 22, 93, 386, 1586, 6476, 26333, 106762, 431910, 1744436, 7036530, 28354132, 114159428, 459312152, 1846943453, 7423131482, 29822170718, 119766321572, 480832549478, 1929894318332, 7744043540348, 31067656725032, 124613686513778, 499744650202436
Offset: 0

Views

Author

Keywords

Comments

Also a(n) = 2nd elementary symmetric function of binomial(n,0), binomial(n,1), ..., binomial(n,n).
Also a(n) = one half the sum of the heights, over all Dyck (n+2)-paths, of the vertices that are at even height and terminate an upstep. For example with n=1, these vertices are indicated by asterisks in the 5 Dyck 3-paths: UU*UDDD, UU*DU*DD, UDUU*DD, UDUDUD, UU*DDUD, yielding a(1)=(2+4+2+0+2)/2=5. - David Callan, Jul 14 2006
Hankel transform is (-1)^n*(2n+1); the Hankel transform of sum(k=0..n, C(2*n,k) ) - C(2n,n) is (-1)^n*n. - Paul Barry, Jan 21 2007
Row sums of the Riordan matrix (1/(1-4x),(1-sqrt(1-4x))/2) (A187926). - Emanuele Munarini, Mar 16 2011
From Gus Wiseman, Jul 19 2021: (Start)
For n > 0, a(n-1) is also the number of integer compositions of 2n with nonzero alternating sum, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. These compositions are ranked by A053754 /\ A345921. For example, the a(3-1) = 22 compositions of 6 are:
(6) (1,5) (1,1,4) (1,1,1,3) (1,1,1,1,2)
(2,4) (1,2,3) (1,1,3,1) (1,1,2,1,1)
(4,2) (1,4,1) (1,2,1,2) (2,1,1,1,1)
(5,1) (2,1,3) (1,3,1,1)
(2,2,2) (2,1,2,1)
(3,1,2) (3,1,1,1)
(3,2,1)
(4,1,1)
(End)

Examples

			G.f. = 1 + 5*x + 22*x^2 + 93*x^3 + 386*x^4 + 1586*x^5 + 6476*x^6 + ...
		

References

  • T. Myers and L. Shapiro, Some applications of the sequence 1, 5, 22, 93, 386, ... to Dyck paths and ordered trees, Congressus Numerant., 204 (2010), 93-104.
  • D. Phulara and L. W. Shapiro, Descendants in ordered trees with a marked vertex, Congressus Numerantium, 205 (2011), 121-128.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000108, A014137, A014318. A column of A058893. Subdiagonal of A053979.
Bisection of A058622 and (possibly) A007008.
Even bisection of A294175 (without the first two terms).
The following relate to compositions of 2n with alternating sum k.
- The k > 0 case is counted by A000302.
- The k <= 0 case is counted by A000302.
- The k != 0 case is counted by A000346 (this sequence).
- The k = 0 case is counted by A001700 or A088218.
- The k < 0 case is counted by A008549.
- The k >= 0 case is counted by A114121.
A011782 counts compositions.
A086543 counts partitions with nonzero alternating sum (bisection: A182616).
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A345197 counts compositions by length and alternating sum.

Programs

  • Magma
    [2^(2*n+1) - Binomial(2*n+1,n+1): n in [0..30]]; // Vincenzo Librandi, Jun 07 2011
  • Maple
    seq(2^(2*n+1)-binomial(2*n,n)*(2*n+1)/(n+1), n=0..12); # Emanuele Munarini, Mar 16 2011
  • Mathematica
    Table[2^(2n+1)-Binomial[2n,n](2n+1)/(n+1),{n,0,20}] (* Emanuele Munarini, Mar 16 2011 *)
    a[ n_] := If[ n<-4, 0, (4^(n + 1) - Binomial[2 n + 2, n + 1]) / 2]; (* Michael Somos, Jan 25 2014 *)
  • Maxima
    makelist(2^(2*n+1)-binomial(2*n,n)*(2*n+1)/(n+1),n,0,12); /* Emanuele Munarini, Mar 16 2011 */
    
  • PARI
    {a(n) = if( n<-4, 0, n++; (2^(2*n) - binomial(2*n, n)) / 2)}; /* Michael Somos, Jan 25 2014 */
    

Formula

G.f.: c(x)/(1-4x), c(x) = g.f. of Catalan numbers.
Convolution of Catalan numbers and powers of 4.
Also one half of convolution of central binomial coeffs. A000984(n), n=0, 1, 2, ... with shifted central binomial coeffs. A000984(n), n=1, 2, 3, ...
a(n) = A045621(2n+1) = (1/2)*A068551(n+1).
a(n) = Sum_{k=0..n} A000984(k)*A001700(n-k). - Philippe Deléham, Jan 22 2004
a(n) = Sum_{k=0..n+1} binomial(n+k, k-1)2^(n-k+1). - Paul Barry, Nov 13 2004
a(n) = Sum_{i=0..n} binomial(2n+2, i). See A008949. - Ed Catmur (ed(AT)catmur.co.uk), Dec 09 2006
a(n) = Sum_{k=0..n+1, C(2n+2,k)} - C(2n+2,n+1). - Paul Barry, Jan 21 2007
Logarithm g.f. log(1/(2-C(x)))=sum(n>0, a(n)/n*x^n), C(x)=(1-sqrt(1-4*x))/2x (A000108). - Vladimir Kruchinin, Aug 10 2010
D-finite with recurrence: (n+3) a(n+2) - 2(4n+9) a(n+1) + 8(2n+3) a(n) = 0. - Emanuele Munarini, Mar 16 2011
E.g.f.:exp(2*x)*(2*exp(2*x) - BesselI(0,2*x) - BesselI(1,2*x)).
This is the first derivative of exp(2*x)*(exp(2*x) - BesselI(0,2*x))/2. See the e.g.f. of A032443 (which has a plus sign) and the remarks given there. - Wolfdieter Lang, Jan 16 2012
a(n) = Sum_{0<=iMircea Merca, Apr 05 2012
A000346 = A004171 - A001700. See A032443 for the sum. - M. F. Hasler, Jan 02 2014
0 = a(n) * (256*a(n+1) - 224*a(n+2) + 40*a(n+3)) + a(n+1) * (-32*a(n+1) + 56*a(n+2) - 14*a(n+3)) + a(n+2) * (-2*a(n+2) + a(n+3)) if n>-5. - Michael Somos, Jan 25 2014
REVERT transform is [1,-5,28,-168,1056,...] = alternating signed version of A069731. - Michael Somos, Jan 25 2014
Convolution square is A038806. - Michael Somos, Jan 25 2014
BINOMIAL transform of A055217(n-1) is a(n-1). - Michael Somos, Jan 25 2014
(n+1) * a(n) = A033504(n). - Michael Somos, Jan 25 2014
Recurrence: (n+1)*a(n) = 512*(2*n-7)*a(n-5) + 256*(13-5*n)*a(n-4) + 64*(10*n-17)*a(n-3) + 32*(4-5*n)*a(n-2) + 2*(10*n+1)*a(n-1), n>=5. - Fung Lam, Mar 21 2014
Asymptotic approximation: a(n) ~ 2^(2n+1)*(1-1/sqrt(n*Pi)). - Fung Lam, Mar 21 2014
a(n) = Sum_{m = n+2..2*(n+1)} binomial(2*(n+1), m), n >= 0. - Wolfdieter Lang, May 22 2015
a(n) = A000302(n) + A008549(n). - Gus Wiseman, Jul 19 2021
a(n) = Sum_{j=1..n+1} Sum_{k=1..j} 2^(j-k)*binomial(n+k-1, n). - Fabio Visonà, May 04 2022
a(n) = (1/2)*(-1)^n*binomial(-(n+1), n+2)*hypergeom([1, 2*n + 3], [n + 3], 1/2). - Peter Luschny, Nov 29 2023

Extensions

Corrected by Christian G. Bower

A103943 Number of unrooted two-vertex n-edge maps in the plane (planar with a distinguished outside face).

Original entry on oeis.org

1, 3, 12, 48, 196, 798, 3248, 13184, 53416, 216018, 872344, 3518496, 14177528, 57080572, 229657792, 923474944, 3711572176, 14911097514, 59883185096, 240416320928, 964947251544, 3872021946532, 15533828715232, 62306843932928
Offset: 1

Views

Author

Valery A. Liskovets, Mar 17 2005

Keywords

References

  • V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.

Crossrefs

Programs

  • Mathematica
    f[n_] := (2^(2n - 1) - Binomial[2n - 1, n - 1] + Binomial[n - 1, Floor[n/2]])/2; Table[ f[n], {n, 24}] (* Robert G. Wilson v, Mar 24 2005 *)
    Rest[CoefficientList[Series[1/8(-2+2/(1-4x)-1/Sqrt[1-4x]+1/Sqrt[1+4x]+2/Sqrt[-1+2/(1+2x)]-Sqrt[1+Sqrt[1-16x^2]]/Sqrt[1/2-8x^2]), {x, 0, 20}], x]] (* Benedict W. J. Irwin, Aug 13 2016 *)

Formula

2a(n) = 2^(2n-1) - binomial(2n-1, n-1) + binomial(n-1, floor(n/2)).
G.f.: 1/8*(2/q^2 -2 + 1/p - 1/q + 2*sqrt(p^2-2*x)/sqrt(q^2+2*x) - sqrt(2 + 2*p*q)/(p*q)), where p=sqrt(1+4*x) and q=sqrt(1-4*x). - Benedict W. J. Irwin, Aug 13 2016

Extensions

More terms from Robert G. Wilson v, Mar 24 2005

A130783 Maximum value of the n-th difference of a permutation of 0..n.

Original entry on oeis.org

0, 1, 3, 10, 25, 66, 154, 372, 837, 1930, 4246, 9516, 20618, 45332, 97140, 210664, 447661, 960858, 2028478, 4319100, 9070110, 19188796, 40122028, 84438360, 175913250, 368603716, 765561564, 1598231992, 3310623412, 6889682280, 14238676712, 29551095248
Offset: 0

Views

Author

R. H. Hardin, Aug 19 2007

Keywords

Comments

For n>1, a(n) is also the maximum value of the n-th difference of a permutation of 1..n. - Michel Marcus, Apr 15 2017

Examples

			a(1)=1 because 0 1 has a first difference of 1;
a(2)=3 because 2 0 1 has a second difference of 3.
		

Crossrefs

Programs

Formula

a(n) = (n+1)*(2^(n-1)-binomial(n-1,n/2)) if n is even else ((n+1)/2)*(2^n-binomial(n,(n+1)/2)). - Vladeta Jovovic, Aug 23 2007
a(n) = (n+1)*(2^n-binomial(n,[n/2]))/2, where [x] is floor. - Graeme McRae, Jan 30 2012
G.f.: (1-sqrt((1-2*x)/(1+2*x)))/(2*(1-2*x)^2). - Vladeta Jovovic, Aug 24 2007
Asymptotics: a(n) ~ 2^(n-1)*(n+1-sqrt(2*n/Pi)). - Fung Lam, Mar 28 2014
D-finite with recurrence (n-1)*n*a(n) = 2*(n-1)*(n+1)*a(n-1) + 4*(n-2)*n*a(n-2) - 8*(n-1)*n*a(n-3). - Vaclav Kotesovec, Mar 28 2014
a(2n) = A303602(n). a(2n+1) = A033504(n). - R. J. Mathar, Nov 20 2020

A100511 a(n) = Sum_{j=0..n} Sum_{k=0..n} binomial(n,j)*binomial(n,k)*max(j,k).

Original entry on oeis.org

0, 3, 22, 126, 652, 3190, 15060, 69356, 313624, 1398438, 6166660, 26948548, 116888232, 503811516, 2159864392, 9216445080, 39168381488, 165864540934, 700151508324, 2947120122068, 12373581565960, 51831196048212, 216659135089496, 903925011410536
Offset: 0

Views

Author

N. J. A. Sloane, Nov 24 2004

Keywords

Crossrefs

Programs

  • Magma
    [n*(4^n +(n+1)*Catalan(n))/2: n in [0..40]]; // G. C. Greubel, Apr 01 2023
    
  • Mathematica
    Table[n*(4^n +(n+1)*CatalanNumber[n])/2, {n,0,40}] (* G. C. Greubel, Apr 01 2023 *)
  • PARI
    a(n) = n*2^(2*n-1) + (n/2)*binomial(2*n, n); \\ Michel Marcus, Dec 26 2017
    
  • SageMath
    [n*(4^n +binomial(2*n,n))/2 for n in range(41)] # G. C. Greubel, Apr 01 2023

Formula

a(n) = n*2^(2*n-1) + (n/2)*binomial(2*n, n). [Typo corrected by Ognjen Dragoljevic, Dec 26 2017]
From G. C. Greubel, Apr 01 2023: (Start)
G.f.: x*(2 + sqrt(1-4*x))/(1-4*x)^2.
E.g.f.: x*(2*exp(4*x)+ exp(2*x)*(BesselI(0, 2*x) + BesselI(1, 2*x))). (End)

A157933 Triangle T(i,j) such that Sum_{j=0..i} T(i,j)*x(i,j)/2^i = Sum_{k=0..i, j=0..k} x(k,j), if x(k-1,j) = (x(k,j) + x(k,j+1))/2.

Original entry on oeis.org

1, 3, 3, 7, 10, 7, 15, 25, 25, 15, 31, 56, 66, 56, 31, 63, 119, 154, 154, 119, 63, 127, 246, 337, 372, 337, 246, 127, 255, 501, 711, 837, 837, 711, 501, 255, 511, 1012, 1468, 1804, 1930, 1804, 1468, 1012, 511, 1023, 2035, 2992, 3784, 4246, 4246, 3784, 2992, 2035, 1023
Offset: 0

Views

Author

M. F. Hasler, Mar 16 2009

Keywords

Comments

Rows and columns are numbered starting with 0. Consider a pyramid (triangle) where each element is the mean value of the two elements below. Then the sum of all elements is expressed as linear combination of the elements at the base. This sequence gives the coefficients times the necessary power of 2.

Examples

			To get the 3rd row of the triangle, consider the pyramid
    f
   d e
  a b c
where d=(a+b)/2, e=(b+c)/2, f=(d+e)/2. Then a+b+c+d+e+f=(7a+10b+7c)/2^2, which yields the row (7,10,7).
Triangle begins:
   1,
   3,   3;
   7,  10,   7;
  15,  25,  25,  15;
  31,  56,  66,  56,  31;
  63, 119, 154, 154, 119, 63;
  ...
		

Crossrefs

Row sums give A001788(n+1).
T(2n,n) gives A033504.

Formula

The first and last term in the (i+1)-th row is T(i,0) = 2^(i+1)-1.
The second and penultimate term is T(i,1) = T(i,0) + T(i-1,1).
G.f.: 1/((1-2*x)*(1-2*x*y)*(1-x-x*y)). - Yu-Sheng Chang, Sep 20 2023
Showing 1-5 of 5 results.