cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A101265 a(1) = 1, a(2) = 2, a(3) = 6; a(n) = 5*a(n-1) - 5*a(n-2) + a(n-3) for n > 3.

Original entry on oeis.org

1, 2, 6, 21, 77, 286, 1066, 3977, 14841, 55386, 206702, 771421, 2878981, 10744502, 40099026, 149651601, 558507377, 2084377906, 7779004246, 29031639077, 108347552061, 404358569166, 1509086724602, 5631988329241, 21018866592361, 78443478040202, 292755045568446
Offset: 1

Views

Author

Lambert Klasen (lambert.klasen(AT)gmx.net) and Gary W. Adamson, Jan 25 2005

Keywords

Comments

Let M = [ 1, 1, 0; 1, 3, 1; 0, 1, 1 ]; then [1,0,0]*M^n = [a(n), A001353(n), A061278(n-1)] for n > 1. Further, A001353 consists of the first differences of {a(n)}, and since a(n) = A061278(n) + 1, A001353 is also the first differences of A061278. Let v(n) = [1,0,0]*M^n; then, for n >= 0, sum(v_i(n)) = A001075(n) and v_1(n) + v_3(n) = A001835(n). The characteristic polynomial of M is x^3 - 5x^2 + 5x - 1. a(n)/a(n-1) tends to 2 + sqrt(3) = 3.732.... (see A019973) (a root of the polynomial and an eigenvalue of the matrix).
Numbers k such that the RootMeanSquare([1..6*k-5]) is an integer. - Ctibor O. Zizka, Dec 17 2008
Place a(n) blue and b(n) red balls in an urn. Draw 3 balls without replacement. Then Probability(3 red balls) = Probability(1 red and 2 blue balls); binomial(b(n),3) = binomial(b(n),1)*binomial(a(n),2); b(n) = A179167(n). - Paul Weisenhorn, Jul 01 2010
Conjecture: consecutive terms of this sequence and consecutive terms of A032908 provide all the positive integer solutions of (a+b)*(a+b+1) == 0 (mod (a*b)). - Robert Israel, Aug 26 2015
Conjecture is true: see StackExchange link. - Robert Israel, Sep 06 2015
Values of a unitary Y-frieze pattern associated to the linearly oriented quiver K3 (i.e., the quiver whose underlying graph is the complete graph on the vertices {1,2,3}, oriented such that i -> j whenever i < j). - Antoine de Saint Germain, Dec 30 2024

Crossrefs

Programs

  • GAP
    a:=[1,2,6];; for n in [4..20] do a[n]:=5a[n-1]-5*a[n-2]+a[n-3]; od; a; #
    G. C. Greubel, Dec 23 2019
  • Haskell
    a101265 n = a101265_list !! (n-1)
    a101265_list = 1 : 2 : 6 : zipWith (+) a101265_list
        (map (* 5) $ tail $ zipWith (-) (tail a101265_list) a101265_list)
    -- Reinhard Zumkeller, May 18 2014
    
  • Magma
    I:=[1,2,6]; [n le 3 select I[n] else 5*Self(n-1) - 5*Self(n-2) + Self(n-3): n in [1..30]]; // Vincenzo Librandi, Sep 07 2015
    
  • Maple
    r:=sqrt(3): for n from 1 to 100 do a[n]:=(6+(3+r)*(2+r)^(n-1)+(3-r)*(2-r)^(n-1))/12: end do: # Paul Weisenhorn, Jul 01 2010
    r:=sqrt(3): a[n]:=round((6+(3+r)*(2+r)^(n-1))/12): # Paul Weisenhorn, Jul 01 2010
    f:= proc(n)
      option remember; local x;
      x:= procname(n-1);
      2*x + (sqrt(12*x^2 - 12*x + 1) - 1)/2
    end proc:
    f(1):= 1:
    map(f, [$1..30]); # Robert Israel, Aug 26 2015
    seq( simplify((ChebyshevU(n,2) - Chebyshev(n-1,2) + 1)/2), n=0..20); # G. C. Greubel, Dec 23 2019
  • Mathematica
    LinearRecurrence[{5,-5,1},{1,2,6},25] (* Ray Chandler, Jan 27 2014 *)
    CoefficientList[Series[(1-3x+x^2)/((1-x)(1-4x+x^2)), {x, 0, 33}], x] (* Vincenzo Librandi, Sep 07 2015 *)
    Table[(ChebyshevU[n, 2] - ChebyshevU[n-1, 2] + 1)/2, {n, 0, 20}] (* G. C. Greubel, Dec 23 2019 *)
  • PARI
    M = [ 1, 1, 0; 1, 3, 1; 0, 1, 1]; for(i=1,30,print1(([1,0,0]*M^i)[1],","))
    
  • PARI
    {a(n)=polcoeff(x*(1-3*x+x^2)/((1-x)*(1-4*x+x^2)+x*O(x^n)),n)}
    
  • PARI
    {a(n)=if(n==0,1,if(n==1,1,a(n-1)*(a(n-1)+1)/a(n-2)))} /* Paul D. Hanna, Apr 08 2012 */
    
  • PARI
    vector(21, n, (polchebyshev(n, 2, 2) - polchebyshev(n-1, 2, 2) + 1)/2 ) \\ G. C. Greubel, Dec 23 2019
    
  • Sage
    [(chebyshev_U(n,2) - chebyshev_U(n-1,2) + 1)/2 for n in (0..20)] # G. C. Greubel, Dec 23 2019
    

Formula

a(n) = A005246(n)*A005246(n+1). a(n+1) = a(n)*(a(n)+1)/a(n-1). - Franklin T. Adams-Watters, Apr 24 2006
a(n) = (A001835(n) + 1) / 2. - Ralf Stephan, May 16 2007
O.g.f.: x*(1-3*x+x^2)/((1-x)*(1-4*x+x^2)). - R. J. Mathar, Aug 22 2008
a(n) = 1 + A061278(n). - Ctibor O. Zizka, Dec 17 2008
a(n) = 4*a(n-1) - a(n-2) - 1. - N. Sato, Jan 21 2010
a(n) = (6+(3+r)*(2+r)^(n-1) + (3-r)*(2-r)^(n-1))/12; r=sqrt(3). - Paul Weisenhorn, Jul 01 2010
a(n+1) = a(n) * (a(n) + 1) / a(n-1) for n>1 with a(0)=1, a(1)=1. - Paul D. Hanna, Apr 08 2012
From Peter Bala, May 01 2012: (Start)
a(n+1) = 1 + Sum {k = 1..n} 2^(k-1)*binomial(n+k,2*k).
Row sums of A211955.
a(n) = T(n,u)*T(n+1,u)/u with u = sqrt(3) and T(n,x) denotes the Chebyshev polynomial of the first kind.
Sum_{n >= 0} 1/a(n) = sqrt(3). In fact, 3 - (Sum_{n = 0..2*N} 1/a(n))^2 = 2/(A001835(N+1))^2 and 3 - (Sum_{n = 0..2*N+1} 1/a(n))^2 = 3/(A001075(N+1))^2. (End)
From Robert Israel, Aug 26 2015: (Start)
(a(n) + a(n+1))*(a(n) + a(n+1) + 1) = 6 * a(n) * a(n+1).
a(n+1) = 2*a(n) + (sqrt(12*a(n)^2 - 12*a(n) + 1) - 1)/2. (End)
a(n) = (ChebyshevU(n, 2) - ChebyshevU(n-1, 2) + 1)/2 = (ChebyshevT(n, 2) + ChebyshevU(n, 2) + 2)/4. - G. C. Greubel, Dec 23 2019
a(n) = (1+a(n-1))*(1+a(n-2))/a(n-3) for n > 3. - Antoine de Saint Germain, Dec 30 2024

Extensions

a(26)-a(27) from Vincenzo Librandi, Sep 07 2015