cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A001835 a(n) = 4*a(n-1) - a(n-2), with a(0) = 1, a(1) = 1.

Original entry on oeis.org

1, 1, 3, 11, 41, 153, 571, 2131, 7953, 29681, 110771, 413403, 1542841, 5757961, 21489003, 80198051, 299303201, 1117014753, 4168755811, 15558008491, 58063278153, 216695104121, 808717138331, 3018173449203, 11263976658481, 42037733184721, 156886956080403, 585510091136891
Offset: 0

Views

Author

Keywords

Comments

See A079935 for another version.
Number of ways of packing a 3 X 2*(n-1) rectangle with dominoes. - David Singmaster.
Equivalently, number of perfect matchings of the P_3 X P_{2(n-1)} lattice graph. - Emeric Deutsch, Dec 28 2004
The terms of this sequence are the positive square roots of the indices of the octagonal numbers (A046184) - Nicholas S. Horne (nairon(AT)loa.com), Dec 13 1999
Terms are the solutions to: 3*x^2 - 2 is a square. - Benoit Cloitre, Apr 07 2002
Gives solutions x > 0 of the equation floor(x*r*floor(x/r)) == floor(x/r*floor(x*r)) where r = 1 + sqrt(3). - Benoit Cloitre, Feb 19 2004
a(n) = L(n-1,4), where L is defined as in A108299; see also A001834 for L(n,-4). - Reinhard Zumkeller, Jun 01 2005
Values x + y, where (x, y) solves for x^2 - 3*y^2 = 1, i.e., a(n) = A001075(n) + A001353(n). - Lekraj Beedassy, Jul 21 2006
Number of 01-avoiding words of length n on alphabet {0,1,2,3} which do not end in 0. (E.g., for n = 2 we have 02, 03, 11, 12, 13, 21, 22, 23, 31, 32, 33.) - Tanya Khovanova, Jan 10 2007
sqrt(3) = 2/2 + 2/3 + 2/(3*11) + 2/(11*41) + 2/(41*153) + 2/(153*571) + ... - Gary W. Adamson, Dec 18 2007
The lower principal convergents to 3^(1/2), beginning with 1/1, 5/3, 19/11, 71/41, comprise a strictly increasing sequence; numerators = A001834, denominators = A001835. - Clark Kimberling, Aug 27 2008
From Gary W. Adamson, Jun 21 2009: (Start)
A001835 and A001353 = bisection of denominators of continued fraction [1, 2, 1, 2, 1, 2, ...]; i.e., bisection of A002530.
a(n) = determinant of an n*n tridiagonal matrix with 1's in the super- and subdiagonals and (3, 4, 4, 4, ...) as the main diagonal.
Also, the product of the eigenvalues of such matrices: a(n) = Product_{k=1..(n-1)/2)} (4 + 2*cos(2*k*Pi/n).
(End)
Let M = a triangle with the even-indexed Fibonacci numbers (1, 3, 8, 21, ...) in every column, and the leftmost column shifted up one row. a(n) starting (1, 3, 11, ...) = lim_{n->oo} M^n, the left-shifted vector considered as a sequence. - Gary W. Adamson, Jul 27 2010
a(n+1) is the number of compositions of n when there are 3 types of 1 and 2 types of other natural numbers. - Milan Janjic, Aug 13 2010
For n >= 2, a(n) equals the permanent of the (2*n-2) X (2*n-2) tridiagonal matrix with sqrt(2)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
Primes in the sequence are apparently those in A096147. - R. J. Mathar, May 09 2013
Except for the first term, positive values of x (or y) satisfying x^2 - 4xy + y^2 + 2 = 0. - Colin Barker, Feb 04 2014
Except for the first term, positive values of x (or y) satisfying x^2 - 14xy + y^2 + 32 = 0. - Colin Barker, Feb 10 2014
The (1,1) element of A^n where A = (1, 1, 1; 1, 2, 1; 1, 1, 2). - David Neil McGrath, Jul 23 2014
Yong Hao Ng has shown that for any n, a(n) is coprime with any member of A001834 and with any member of A001075. - René Gy, Feb 25 2018
a(n+1) is the number of spanning trees of the graph T_n, where T_n is a 2 X n grid with an additional vertex v adjacent to (1,1) and (2,1). - Kevin Long, May 04 2018
a(n)/A001353(n) is the resistance of an n-ladder graph whose edges are replaced by one-ohm resistors. The resistance in ohms is measured at two nodes at one end of the ladder. It approaches sqrt(3) - 1 for n -> oo. See A342568, A357113, and A357115 for related information. - Hugo Pfoertner, Sep 17 2022
a(n) is the number of ways to tile a 1 X (n-1) strip with three types of tiles: small isosceles right triangles (with small side length 1), 1 X 1 squares formed by joining two of those right triangles along the hypotenuse, and large isosceles right triangles (with large side length 2) formed by joining two of those right triangles along a short leg. As an example, here is one of the a(6)=571 ways to tile a 1 X 5 strip with these kinds of tiles:
| / \ |\ /| |
|/_\|\/_||. - Greg Dresden and Arjun Datta, Jun 30 2023
From Klaus Purath, May 11 2024: (Start)
For any two consecutive terms (a(n), a(n+1)) = (x,y): x^2 - 4xy + y^2 = -2 = A028872(-1). In general, the following applies to all sequences (t) satisfying t(i) = 4t(i-1) - t(i-2) with t(0) = 1 and two consecutive terms (x,y): x^2 - 4xy + y^2 = A028872(t(1)-2). This includes and interprets the Feb 04 2014 comments here and on A001075 by Colin Barker and the Dec 12 2012 comment on A001353 by Max Alekseyev. By analogy to this, for three consecutive terms (x,y,z) y^2 - xz = A028872(t(1)-2). This includes and interprets the Jul 10 2021 comment on A001353 by Bernd Mulansky.
If (t) is a sequence satisfying t(k) = 3t(k-1) + 3t(k-2) - t(k-3) or t(k) = 4t(k-1) - t(k-2) without regard to initial values and including this sequence itself, then a(n) = (t(k+2n+1) + t(k))/(t(k+n+1) + t(k+n)) always applies, as long as t(k+n+1) + t(k+n) != 0 for integer k and n >= 1. (End)
Binomial transform of 1, 0, 2, 4, 12, ... (A028860 without the initial -1) and reverse binomial transform of 1, 2, 6, 24, 108, ... (A094433 without the initial 1). - Klaus Purath, Sep 09 2024

References

  • Julio R. Bastida, Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163-166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009).
  • Leonhard Euler, (E388) Vollstaendige Anleitung zur Algebra, Zweiter Theil, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 1, p. 375.
  • F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 329.
  • Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics I, p. 292.

Crossrefs

Row 3 of array A099390.
Essentially the same as A079935.
First differences of A001353.
Partial sums of A052530.
Pairwise sums of A006253.
Bisection of A002530, A005246 and A048788.
First column of array A103997.
Cf. A001519, A003699, A082841, A101265, A125077, A001353, A001542, A096147 (subsequence of primes).

Programs

  • GAP
    a:=[1,1];; for n in [3..20] do a[n]:=4*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019
  • Haskell
    a001835 n = a001835_list !! n
    a001835_list =
       1 : 1 : zipWith (-) (map (4 *) $ tail a001835_list) a001835_list
    -- Reinhard Zumkeller, Aug 14 2011
    
  • Magma
    [n le 2 select 1 else 4*Self(n-1)-Self(n-2): n in [1..25]]; // Vincenzo Librandi, Sep 16 2016
    
  • Maple
    f:=n->((3+sqrt(3))^(2*n-1)+(3-sqrt(3))^(2*n-1))/6^n; [seq(simplify(expand(f(n))),n=0..20)]; # N. J. A. Sloane, Nov 10 2009
  • Mathematica
    CoefficientList[Series[(1-3x)/(1-4x+x^2), {x, 0, 24}], x] (* Jean-François Alcover, Jul 25 2011, after g.f. *)
    LinearRecurrence[{4,-1},{1,1},30] (* Harvey P. Dale, Jun 08 2013 *)
    Table[Round@Fibonacci[2n-1, Sqrt[2]], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
    Table[(3*ChebyshevT[n, 2] - ChebyshevU[n, 2])/2, {n, 0, 20}] (* G. C. Greubel, Dec 23 2019 *)
  • PARI
    {a(n) = real( (2 + quadgen(12))^n * (1 - 1 / quadgen(12)) )} /* Michael Somos, Sep 19 2008 */
    
  • PARI
    {a(n) = subst( (polchebyshev(n) + polchebyshev(n-1)) / 3, x, 2)} /* Michael Somos, Sep 19 2008 */
    
  • Sage
    [lucas_number1(n,4,1)-lucas_number1(n-1,4,1) for n in range(25)] # Zerinvary Lajos, Apr 29 2009
    
  • Sage
    [(3*chebyshev_T(n,2) - chebyshev_U(n,2))/2 for n in (0..20)] # G. C. Greubel, Dec 23 2019
    

Formula

G.f.: (1 - 3*x)/(1 - 4*x + x^2). - Simon Plouffe in his 1992 dissertation
a(1-n) = a(n).
a(n) = ((3 + sqrt(3))^(2*n - 1) + (3 - sqrt(3))^(2*n - 1))/6^n. - Dean Hickerson, Dec 01 2002
a(n) = (8 + a(n-1)*a(n-2))/a(n-3). - Michael Somos, Aug 01 2001
a(n+1) = Sum_{k=0..n} 2^k * binomial(n + k, n - k), n >= 0. - Len Smiley, Dec 09 2001
Limit_{n->oo} a(n)/a(n-1) = 2 + sqrt(3). - Gregory V. Richardson, Oct 10 2002
a(n) = 2*A061278(n-1) + 1 for n > 0. - Bruce Corrigan (scentman(AT)myfamily.com), Nov 04 2002
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n - i, i); then q(n, 2) = a(n+1). - Benoit Cloitre, Nov 10 2002
a(n+1) = Sum_{k=0..n} ((-1)^k)*((2*n+1)/(2*n + 1 - k))*binomial(2*n + 1 - k, k)*6^(n - k) (from standard T(n,x)/x, n >= 1, Chebyshev sum formula). The Smiley and Cloitre sum representation is that of the S(2*n, i*sqrt(2))*(-1)^n Chebyshev polynomial. - Wolfdieter Lang, Nov 29 2002
a(n) = S(n-1, 4) - S(n-2, 4) = T(2*n-1, sqrt(3/2))/sqrt(3/2) = S(2*(n-1), i*sqrt(2))*(-1)^(n - 1), with S(n, x) := U(n, x/2), resp. T(n, x), Chebyshev's polynomials of the second, resp. first, kind. See A049310 and A053120. S(-1, x) = 0, S(-2, x) = -1, S(n, 4) = A001353(n+1), T(-1, x) = x.
a(n+1) = sqrt((A001834(n)^2 + 2)/3), n >= 0 (see Cloitre comment).
Sequence satisfies -2 = f(a(n), a(n+1)) where f(u, v) = u^2 + v^2 - 4*u*v. - Michael Somos, Sep 19 2008
a(n) = (1/6)*(3*(2 - sqrt(3))^n + sqrt(3)*(2 - sqrt(3))^n + 3*(2 + sqrt(3))^n - sqrt(3)*(2 + sqrt(3))^n) (Mathematica's solution to the recurrence relation). - Sarah-Marie Belcastro, Jul 04 2009
If p[1] = 3, p[i] = 2, (i > 1), and if A is Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], (i <= j), A[i,j] = -1, (i = j+1), and A[i,j] = 0 otherwise. Then, for n >= 1, a(n+1) = det A. - Milan Janjic, Apr 29 2010
a(n) = (a(n-1)^2 + 2)/a(n-2). - Irene Sermon, Oct 28 2013
a(n) = A001353(n+1) - 3*A001353(n). - R. J. Mathar, Oct 30 2015
a(n) = a(n-1) + 2*A001353(n-1). - Kevin Long, May 04 2018
From Franck Maminirina Ramaharo, Nov 11 2018: (Start)
a(n) = (-1)^n*(A125905(n) + 3*A125905(n-1)), n > 0.
E.g.f.: exp^(2*x)*(3*cosh(sqrt(3)*x) - sqrt(3)*sinh(sqrt(3)*x))/3. (End)
From Peter Bala, Feb 12 2024: (Start)
For n in Z, a(n) = A001353(n) + A001353(1-n).
For n, j, k in Z, a(n)*a(n+j+k) - a(n+j)*a(n+k) = 2*A001353(j)*A001353(k). The case j = 1, k = 2 is given above. (End)

A001570 Numbers k such that k^2 is centered hexagonal.

Original entry on oeis.org

1, 13, 181, 2521, 35113, 489061, 6811741, 94875313, 1321442641, 18405321661, 256353060613, 3570537526921, 49731172316281, 692665874901013, 9647591076297901, 134373609193269601, 1871582937629476513, 26067787517619401581, 363077442309042145621
Offset: 1

Views

Author

Keywords

Comments

Chebyshev T-sequence with Diophantine property. - Wolfdieter Lang, Nov 29 2002
a(n) = L(n,14), where L is defined as in A108299; see also A028230 for L(n,-14). - Reinhard Zumkeller, Jun 01 2005
Numbers x satisfying x^2 + y^3 = (y+1)^3. Corresponding y given by A001921(n)={A028230(n)-1}/2. - Lekraj Beedassy, Jul 21 2006
Mod[ a(n), 12 ] = 1. (a(n) - 1)/12 = A076139(n) = Triangular numbers that are one-third of another triangular number. (a(n) - 1)/4 = A076140(n) = Triangular numbers T(k) that are three times another triangular number. - Alexander Adamchuk, Apr 06 2007
Also numbers n such that RootMeanSquare(1,3,...,2*n-1) is an integer. - Ctibor O. Zizka, Sep 04 2008
a(n), with n>1, is the length of the cevian of equilateral triangle whose side length is the term b(n) of the sequence A028230. This cevian divides the side (2*x+1) of the triangle in two integer segments x and x+1. - Giacomo Fecondo, Oct 09 2010
For n>=2, a(n) equals the permanent of the (2n-2)X(2n-2) tridiagonal matrix with sqrt(12)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
Beal's conjecture would imply that set intersection of this sequence with the perfect powers (A001597) equals {1}. In other words, existence of a nontrivial perfect power in this sequence would disprove Beal's conjecture. - Max Alekseyev, Mar 15 2015
Numbers n such that there exists positive x with x^2 + x + 1 = 3n^2. - Jeffrey Shallit, Dec 11 2017
Given by the denominators of the continued fractions [1,(1,2)^i,3,(1,2)^{i-1},1]. - Jeffrey Shallit, Dec 11 2017
A near-isosceles integer-sided triangle with an angle of 2*Pi/3 is a triangle whose sides (a, a+1, c) satisfy Diophantine equation (a+1)^3 - a^3 = c^2. For n >= 2, the largest side c is given by a(n) while smallest and middle sides (a, a+1) = (A001921(n-1), A001922(n-1)) (see Julia link). - Bernard Schott, Nov 20 2022

Examples

			G.f. = x + 13*x^2 + 181*x^3 + 2521*x^4 + 35113*x^5 + 489061*x^6 + 6811741*x^7 + ...
		

References

  • E.-A. Majol, Note #2228, L'Intermédiaire des Mathématiciens, 9 (1902), pp. 183-185. - N. J. A. Sloane, Mar 03 2022
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisection of A003500/4. Cf. A006051, A001921, A001922.
One half of odd part of bisection of A001075. First differences of A007655.
Cf. A077417 with companion A077416.
Row 14 of array A094954.
A122571 is another version of the same sequence.
Row 2 of array A188646.
Cf. similar sequences listed in A238379.
Cf. A028231, which gives the corresponding values of x in 3n^2 = x^2 + x + 1.
Similar sequences of the type cosh((2*m+1)*arccosh(k))/k are listed in A302329. This is the case k=2.

Programs

  • Magma
    [((2 + Sqrt(3))^(2*n - 1) + (2 - Sqrt(3))^(2*n - 1))/4: n in [1..50]]; // G. C. Greubel, Nov 04 2017
  • Maple
    A001570:=-(-1+z)/(1-14*z+z**2); # Simon Plouffe in his 1992 dissertation.
  • Mathematica
    NestList[3 + 7*#1 + 4*Sqrt[1 + 3*#1 + 3*#1^2] &, 0, 24] (* Zak Seidov, May 06 2007 *)
    f[n_] := Simplify[(2 + Sqrt@3)^(2 n - 1) + (2 - Sqrt@3)^(2 n - 1)]/4; Array[f, 19] (* Robert G. Wilson v, Oct 28 2010 *)
    a[c_, n_] := Module[{},
       p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
       d := Denominator[Convergents[Sqrt[c], n p]];
       t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];
       Return[t];
      ] (* Complement of A041017 *)
    a[12, 20] (* Gerry Martens, Jun 07 2015 *)
    LinearRecurrence[{14, -1}, {1, 13}, 19] (* Jean-François Alcover, Sep 26 2017 *)
    CoefficientList[Series[x (1-x)/(1-14x+x^2),{x,0,20}],x] (* Harvey P. Dale, Sep 18 2024 *)
  • PARI
    {a(n) = real( (2 + quadgen( 12)) ^ (2*n - 1)) / 2}; /* Michael Somos, Feb 15 2011 */
    

Formula

a(n) = ((2 + sqrt(3))^(2*n - 1) + (2 - sqrt(3))^(2*n - 1)) / 4. - Michael Somos, Feb 15 2011
G.f.: x * (1 - x) / (1 -14*x + x^2). - Michael Somos, Feb 15 2011
Let q(n, x) = Sum_{i=0, n} x^(n-i)*binomial(2*n-i, i) then a(n) = q(n, 12). - Benoit Cloitre, Dec 10 2002
a(n) = S(n, 14) - S(n-1, 14) = T(2*n+1, 2)/2 with S(n, x) := U(n, x/2), resp. T(n, x), Chebyshev's polynomials of the second, resp. first, kind. See A049310 and A053120. S(-1, x)=0, S(n, 14)=A007655(n+1) and T(n, 2)=A001075(n). - Wolfdieter Lang, Nov 29 2002
a(n) = A001075(n)*A001075(n+1) - 1 and thus (a(n)+1)^6 has divisors A001075(n)^6 and A001075(n+1)^6 congruent to -1 modulo a(n) (cf. A350916). - Max Alekseyev, Jan 23 2022
4*a(n)^2 - 3*b(n)^2 = 1 with b(n)=A028230(n+1), n>=0.
a(n)*a(n+3) = 168 + a(n+1)*a(n+2). - Ralf Stephan, May 29 2004
a(n) = 14*a(n-1) - a(n-2), a(0) = a(1) = 1. a(1 - n) = a(n) (compare A122571).
a(n) = 12*A076139(n) + 1 = 4*A076140(n) + 1. - Alexander Adamchuk, Apr 06 2007
a(n) = (1/12)*((7-4*sqrt(3))^n*(3-2*sqrt(3))+(3+2*sqrt(3))*(7+4*sqrt(3))^n -6). - Zak Seidov, May 06 2007
a(n) = A102871(n)^2+(A102871(n)-1)^2; sum of consecutive squares. E.g. a(4)=36^2+35^2. - Mason Withers (mwithers(AT)semprautilities.com), Jan 26 2008
a(n) = sqrt((3*A028230(n+1)^2 + 1)/4).
a(n) = A098301(n+1) - A001353(n)*A001835(n).
a(n) = A000217(A001571(n-1)) + A000217(A133161(n)), n>=1. - Ivan N. Ianakiev, Sep 24 2013
a(n)^2 = A001922(n-1)^3 - A001921(n-1)^3, for n >= 1. - Bernard Schott, Nov 20 2022
a(n) = 2^(2*n-3)*Product_{k=1..2*n-1} (2 - sin(2*Pi*k/(2*n-1))). Michael Somos, Dec 18 2022
a(n) = A003154(A101265(n)). - Andrea Pinos, Dec 19 2022

A061278 a(n) = 5*a(n-1) - 5*a(n-2) + a(n-3) with a(1) = 1 and a(k) = 0 if k <= 0.

Original entry on oeis.org

0, 1, 5, 20, 76, 285, 1065, 3976, 14840, 55385, 206701, 771420, 2878980, 10744501, 40099025, 149651600, 558507376, 2084377905, 7779004245, 29031639076, 108347552060, 404358569165, 1509086724601, 5631988329240, 21018866592360, 78443478040201, 292755045568445
Offset: 0

Views

Author

Henry Bottomley, Jun 04 2001

Keywords

Comments

Indices m of triangular numbers T(m) which are one-third of another triangular number: 3*T(m) = T(k); the k's are given by A001571. - Bruce Corrigan (scentman(AT)myfamily.com), Oct 31 2002
On the previous comment: for m=0 this is actually one third of the same triangular number. - Zak Seidov, Apr 07 2011
Also numbers n such that the n-th centered 24-gonal number 12*n*(n+1)+1 is a perfect square A001834(n)^2, where A001834(n) is defined by the recursion: a(0) = 1, a(1) = 5, a(n) = 4*a(n-1) - a(n-2) + 1. - Alexander Adamchuk, Apr 21 2007
Also numbers n such that RootMeanSquare(5,...,6*n-1) is an integer. - Ctibor O. Zizka, Dec 17 2008 (Corrected by Robert K. Moniot, Jul 22 2020)
Also numbers n such that n*(n+1) = Sum_{i=1..x} n+i for some x. (This does not apply to the first term.). - Gil Broussard, Dec 23 2008
From John P. McSorley, May 26 2020: (Start)
Consecutive terms (a(n-1), a(n)) = (u,v) give all points on the hyperbola u^2 - u + v^2 - v - 4*u*v = 0 in quadrant I with both coordinates an integer.
Also related to the block sizes of small multi-set designs. (End)
If a(n) white balls and a(n+1) black balls are mixed in a bag, and a pair of balls is drawn without replacement, the probability that one ball of each color is drawn is exactly 1/3. These are the only integers for which the probability is 1/3. For example, if there are 20 white balls and 76 black balls, the probability of drawing one of each is (20/96)*(76/95) + (76/96)*(20/95) = 1/3. - Elliott Line, May 13 2022

Examples

			a(2)=5 and T(5)=15 which is 1/3 of 45=T(9).
		

Crossrefs

Cf. A001075, A001353, A001571, A001834, A001835, A079935, A101265. Also cf. A212336 for more sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3).

Programs

  • Magma
    I:=[0, 1]; [n le 2 select I[n] else 4*Self(n-1) - Self(n-2) + 1: n in [1..30]]; // Vincenzo Librandi, Dec 23 2012
  • Maple
    f:= gfun:-rectoproc({a(n) = 5*a(n-1) - 5*a(n-2) + a(n-3),a(1)=1,a(0)=0,a(-1)=0},a(n),remember):
    map(f, [$0..50]); # Robert Israel, Jun 05 2015
  • Mathematica
    CoefficientList[Series[x/(1 - 5*x + 5*x^2 - x^3), {x, 0, nn}], x] (* T. D. Noe, Jun 04 2012 *)
    LinearRecurrence[{5,-5,1},{0,1,5},30] (* Harvey P. Dale, Dec 23 2012 *)
  • PARI
    M = [1, 1, 0; 1, 3, 1; 0, 1, 1]; for(i=1, 30, print1(([1, 0, 0]*M^i)[3], ",")) \\ Lambert Klasen (Lambert.Klasen(AT)gmx.net), Jan 25 2005
    

Formula

a(n) = 4*a(n-1) - a(n-2) + 1.
a(n) = A001075(n) - a(n-1) - 1.
a(n) = (A001835(n+1) - 1)/2 = (A001353(n+1) - A001353(n) - 1)/2.
a(n) = a(n-1) + A001353(n), i.e., partial sum of A001353.
From Bruce Corrigan (scentman(AT)myfamily.com), Oct 31 2002: (Start)
a(n+2) = 4*a(n+1) - a(n) + 1 for a(0)=0, a(1)=1.
G.f.: x/((1 - x)*(1 - 4*x + x^2)).
a(n) = (1/12)*((3 - sqrt(3))*(2 - sqrt(3))^n + (3 + sqrt(3))*(2 + sqrt(3))^n-6). (End)
a(n) = (1/12)*(A003500(n) + A003500(n+1)-6). - Mario Catalani (mario.catalani(AT)unito.it), Apr 11 2003
a(n+1) = Sum_{k=0..n} U(k, 2) = Sum_{k=0..n} S(k, 4), where U(n,x) and S(n,x) are Chebyshev polynomials. - Paul Barry, Nov 14 2003
G.f.: x/(1 - 5*x + 5*x^2 - x^3).
a(n) = A079935(n+1) + A001571(n) for n>0, a(0)=0. - Gerry Martens, Jun 05 2015
a(n)*a(n-2) = a(n-1)*(a(n-1) - 1) for n>1. - Bruno Berselli, Nov 29 2016
From John P. McSorley, May 25 2020: (Start)
a(n)^2 - a(n) + a(n-1)^2 - a(n-1) - 4*a(n)*a(n-1) = 0.
a(n) = A001834(n-1) + a(n-2). (End)
(T(a(n)-1) + T(a(n+1)-1))/T(a(n) + a(n+1) - 1) = 2/3 where T(i) is the i-th triangular number. - Robert K. Moniot, Oct 11 2020
E.g.f.: exp(x)*(exp(x)*(3*cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)) - 3)/6. - Stefano Spezia, Feb 05 2021
a(n) = A101265(n) - 1. - Jon E. Schoenfield, Jan 01 2022

Extensions

More terms from Lambert Klasen (Lambert.Klasen(AT)gmx.net), Jan 25 2005

A005246 a(n) = (1 + a(n-1)*a(n-2))/a(n-3), a(0) = a(1) = a(2) = 1.

Original entry on oeis.org

1, 1, 1, 2, 3, 7, 11, 26, 41, 97, 153, 362, 571, 1351, 2131, 5042, 7953, 18817, 29681, 70226, 110771, 262087, 413403, 978122, 1542841, 3650401, 5757961, 13623482, 21489003, 50843527, 80198051, 189750626, 299303201, 708158977, 1117014753
Offset: 0

Views

Author

Keywords

Comments

For n >= 4 we have the linear recurrence a(n) = 4*a(n-2) - a(n-4). - Ahmed Fares (ahmedfares(AT)my-deja.com), Jun 04 2001
Integer solutions to the equation floor(sqrt(3)*x^2) = x*floor(sqrt(3)*x). - Benoit Cloitre, Mar 18 2004
For n > 2, a(n) is the smallest integer > a(n-1) such that sqrt(3)*a(n) is closer to and greater than an integer than sqrt(3)*a(n-1). I.e., a(n) is the smallest integer > a(n-1) such that frac(sqrt(3)*a(n)) < frac(sqrt(3)*a(n-1)). - Benoit Cloitre, Jan 20 2003
The lower principal and intermediate convergents to 3^(1/2), beginning with 1/1, 3/2, 5/3, 12/7, 19/11, form a strictly increasing sequence; essentially, numerators=A143643 and denominators=A005246. - Clark Kimberling, Aug 27 2008
This sequence is a particular case of the following situation: a(0)=1, a(1)=a, a(2)=b with the recurrence relation a(n+3)=(a(n+2)*a(n+1)+q)/a(n) where q is given in Z to have Q=(a*b^2+q*b+a+q)/(a*b) itself in Z. The g.f. is f: f(z)=(1+a*z+(b-Q)*z^2+(a*b+q-a*Q)*z^3)/(1-Q*z^2+z^4); so we have the linear recurrence: a(n+4)=Q*a(n+2)-a(n). The general form of a(n) is given by: a(2*m) = Sum_{p=0..floor(m/2)} (-1)^p*binomial(m-p,p)*Q^(m-2*p) + (b-Q)*Sum_{p=0..floor((m-1)/2)} (-1)^p*binomial(m-1-p,p)*Q^(m-1-2*p) and a(2*m+1) = a*Sum_{p=0..floor(m/2)} (-1)^p*binomial(m-p,p)*Q^(m-2*p) + (a*b+q-a*Q)*Sum_{p=0..floor((m-1)/2)} (-1)^p*binomial(m-1-p,p)*Q^(m-1-2*p). - Richard Choulet, Feb 24 2010
a(n) for n > 1 are the integer square roots of (floor(m^2/3)+1), where the values of m are given by A143643. Also see A082630. - Richard R. Forberg, Nov 14 2013
The a(n) = (1 + a(n-1)*a(n-2))/a(n-3) recursion has the Laurent property. If a(0), a(1), a(2) are variables, then a(n) is a Laurent polynomial (a rational function with a monomial denominator). - Michael Somos, Feb 27 2019

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 7*x^5 + 11*x^6 + 26*x^7 + 41*x^8 + ...
From _Richard Choulet_, Feb 24 2010: (Start)
a(4) = 4^2 - 4^0 - 3*4^1 = 3.
a(7) = 4^3 - 4*binomial(2,1) - 2*(4^2-1) = 26. (End)
		

References

  • Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisections are A001835 and A001075.
Cf. A101265. Row sums of A211956.
Cf. A001353.

Programs

  • Haskell
    a005246 n = a005246_list !! n
    a005246_list = 1 : 1 : 1 : map (+ 1) (zipWith div
       (zipWith (*) (drop 2 a005246_list) (tail a005246_list)) a005246_list)
    -- Reinhard Zumkeller, Mar 07 2012
  • Maple
    A005246:=-(-1-z+2*z**2+z**3)/(1-4*z**2+z**4); # Conjectured by Simon Plouffe in his 1992 dissertation. Gives sequence except for one of the leading 1's.
    for q from 1 to 10 do :a:=1:b:=1:Q:=(a*b^2+q*b+a+q)/(a*b): for m from 0 to 15 do U(m):=sum((-1)^p*binomial(m-p,p)*Q^(m-2*p),p=0..floor(m/2))+(b-Q)*sum((-1)^p*binomial(m-1-p,p)*Q^(m-1-2*p),p=0..floor((m-1)/2)):od: for m from 0 to 15 do V(m):=a*sum((-1)^p*binomial(m-p,p)*Q^(m-2*p),p=0..floor(m/2))+(a*b+q-a*Q)*sum((-1)^p*binomial(m-1-p,p)*Q^(m-1-2*p),p=0..floor((m-1)/2)):od:for m from 0 to 15 do W(2*m):=U(m):od:for m from 0 to 14 do W(2*m+1):=V(m):od:seq(W(m),m=0..30):od; # Richard Choulet, Feb 24 2010
  • Mathematica
    RecurrenceTable[{a[0]==a[1]==a[2]==1,a[n]==(1+a[n-1]a[n-2])/a[n-3]},a,{n,40}] (* Harvey P. Dale, May 28 2013 *)
    a[n_] := Cosh[(n-1)*ArcSinh[1/Sqrt[2]]]*If[EvenQ[n], Sqrt[2/3], 1]; Table[a[n] // FunctionExpand, {n, 0, 34}] (* Jean-François Alcover, Dec 10 2014, after Peter Bala *)
    a[ n_] := With[{m = If[ n < 0, 2 - n, n]}, SeriesCoefficient[ (1 + x - 3 x^2 - 2 x^3) / (1 - 4 x^2 + x^4), {x, 0, m}]]; (* Michael Somos, Feb 10 2017 *)
  • PARI
    {a(n) = if( n<0, n = 2 - n); polcoeff((1 + x - 3*x^2 - 2*x^3) / (1 - 4*x^2 + x^4) + x * O(x^n), n)}; /* Michael Somos, Nov 15 2006 */
    
  • PARI
    {a(n) = real( (2 + quadgen(12))^(n\2) * if( n%2, 1, 1 - 1 / quadgen(12)) )}; /* Michael Somos, May 24 2012 */
    

Formula

G.f.: (1 + x - 3*x^2 - 2*x^3)/(1 - 4*x^2 + x^4).
Limit_{n->oo} a(2n+1)/a(2n) = (3+sqrt(3))/3 = 1.5773502...; lim_{n->oo} a(2n)/a(2n-1) = (3+sqrt(3))/2 = 2.3660254.... - Benoit Cloitre, Aug 07 2002
A101265(n) = a(n)*a(n+1). - Franklin T. Adams-Watters, Apr 24 2006
a(n) = a(2-n) for all n in Z. - Michael Somos, Nov 15 2006
a(2*n + 1) = A001075(n). a(2*n) = A001835(n). a(2*n + 1) - a(2*n) = a(2*n + 2) - a(2*n + 1) = A001353(n). - Michael Somos, May 24 2012
For n > 2: a(n) = a(n-1) + Sum_{k=1..floor((n-1)/2)} a(2*k). - Reinhard Zumkeller, Dec 16 2007
From Richard Choulet, Feb 24 2010: (Start)
a(2*m) = Sum_{p=0..floor(m/2)} (-1)^p*binomial(m-p,p)*4^(m-2*p) - 3*Sum_{p=0..floor((m-1)/2)} (-1)^p*binomial(m-1-p,p)*4^(m-1-2*p).
a(2*m+1) = Sum_{p=0..floor(m/2)} (-1)^p*binomial(m-p,p)*4^(m-2*p) - 2*Sum_{p=0..floor((m-1)/2)} (-1)^p*binomial(m-1-p,p)*4^(m-1-2*p). (End)
From Tim Monahan, Jul 01 2011: (Start)
Closed form without extra leading 1: ((sqrt(6)+3)*(sqrt(2+sqrt(3))^n+(sqrt(2-sqrt(3))^n))+(3-sqrt(6))*((-sqrt(2+sqrt(3)))^n+(-sqrt(2-sqrt(3)))^n))/12.
Closed form with extra leading 1: ((6+3*sqrt(6)-2*sqrt(3)-3*sqrt(2))*(sqrt(2+sqrt(3))^n)+(6+3*sqrt(6)+2*sqrt(3)+3*sqrt(2))*(sqrt(2-sqrt(3))^n)+(6-3*sqrt(6)-2*sqrt(3)+3*sqrt(2))*((-sqrt(2+sqrt(3)))^n)+(6-3*sqrt(6)+2*sqrt(3)-3*sqrt(2))*((-sqrt(2-sqrt(3)))^n))/24. (End)
a(2*n+2) = Sum_{k = 0..n} 2^k*binomial(n+k,2*k); a(2*n+1) = Sum_{k = 0..n} n/(n+k)*2^k*binomial(n+k,2*k) for n >= 1. Row sums of A211956. - Peter Bala, May 01 2012
a(n) = ((sqrt(2)+sqrt(3)+(-1)^n*(sqrt(2)-sqrt(3)))*sqrt(2+(2-sqrt(3))^n*(2+ sqrt(3))-(-2+sqrt(3))*(2+ sqrt(3))^n))/(4*sqrt(3)). - Gerry Martens, Jun 06 2015
0 = a(n) - 2*a(n+1) + a(n+2) if n is even, 0 = a(n) - 3*a(n+1) + a(n+2) if n is odd for all n in Z. - Michael Somos, Feb 10 2017

Extensions

More terms from Michael Somos, Aug 01 2001

A193649 Q-residue of the (n+1)st Fibonacci polynomial, where Q is the triangular array (t(i,j)) given by t(i,j)=1. (See Comments.)

Original entry on oeis.org

1, 1, 3, 5, 15, 33, 91, 221, 583, 1465, 3795, 9653, 24831, 63441, 162763, 416525, 1067575, 2733673, 7003971, 17938661, 45954543, 117709185, 301527355, 772364093, 1978473511
Offset: 0

Views

Author

Clark Kimberling, Aug 02 2011

Keywords

Comments

Suppose that p=p(0)*x^n+p(1)*x^(n-1)+...+p(n-1)*x+p(n) is a polynomial of positive degree and that Q is a sequence of polynomials: q(k,x)=t(k,0)*x^k+t(k,1)*x^(k-1)+...+t(k,k-1)*x+t(k,k), for k=0,1,2,... The Q-downstep of p is the polynomial given by D(p)=p(0)*q(n-1,x)+p(1)*q(n-2,x)+...+p(n-1)*q(0,x)+p(n).
Since degree(D(p))
Example: let p(x)=2*x^3+3*x^2+4*x+5 and q(k,x)=(x+1)^k.
D(p)=2(x+1)^2+3(x+1)+4(1)+5=2x^2+7x+14
D(D(p))=2(x+1)+7(1)+14=2x+23
D(D(D(p)))=2(1)+23=25;
the Q-residue of p is 25.
We may regard the sequence Q of polynomials as the triangular array formed by coefficients:
t(0,0)
t(1,0)....t(1,1)
t(2,0)....t(2,1)....t(2,2)
t(3,0)....t(3,1)....t(3,2)....t(3,3)
and regard p as the vector (p(0),p(1),...,p(n)). If P is a sequence of polynomials [or triangular array having (row n)=(p(0),p(1),...,p(n))], then the Q-residues of the polynomials form a numerical sequence.
Following are examples in which Q is the triangle given by t(i,j)=1 for 0<=i<=j:
Q.....P...................Q-residue of P
1.....1...................A000079, 2^n
1....(x+1)^n..............A007051, (1+3^n)/2
1....(x+2)^n..............A034478, (1+5^n)/2
1....(x+3)^n..............A034494, (1+7^n)/2
1....(2x+1)^n.............A007582
1....(3x+1)^n.............A081186
1....(2x+3)^n.............A081342
1....(3x+2)^n.............A081336
1.....A040310.............A193649
1....(x+1)^n+(x-1)^n)/2...A122983
1....(x+2)(x+1)^(n-1).....A057198
1....(1,2,3,4,...,n)......A002064
1....(1,1,2,3,4,...,n)....A048495
1....(n,n+1,...,2n).......A087323
1....(n+1,n+2,...,2n+1)...A099035
1....p(n,k)=(2^(n-k))*3^k.A085350
1....p(n,k)=(3^(n-k))*2^k.A090040
1....A008288 (Delannoy)...A193653
1....A054142..............A101265
1....cyclotomic...........A193650
1....(x+1)(x+2)...(x+n)...A193651
1....A114525..............A193662
More examples:
Q...........P.............Q-residue of P
(x+1)^n...(x+1)^n.........A000110, Bell numbers
(x+1)^n...(x+2)^n.........A126390
(x+2)^n...(x+1)^n.........A028361
(x+2)^n...(x+2)^n.........A126443
(x+1)^n.....1.............A005001
(x+2)^n.....1.............A193660
A094727.....1.............A193657
(k+1).....(k+1)...........A001906 (even-ind. Fib. nos.)
(k+1).....(x+1)^n.........A112091
(x+1)^n...(k+1)...........A029761
(k+1)......A049310........A193663
(In these last four, (k+1) represents the triangle t(n,k)=k+1, 0<=k<=n.)
A051162...(x+1)^n.........A193658
A094727...(x+1)^n.........A193659
A049310...(x+1)^n.........A193664
Changing the notation slightly leads to the Mathematica program below and the following formulation for the Q-downstep of p: first, write t(n,k) as q(n,k). Define r(k)=Sum{q(k-1,i)*r(k-1-i) : i=0,1,...,k-1} Then row n of D(p) is given by v(n)=Sum{p(n,k)*r(n-k) : k=0,1,...,n}.

Examples

			First five rows of Q, coefficients of Fibonacci polynomials (A049310):
1
1...0
1...0...1
1...0...2...0
1...0...3...0...1
To obtain a(4)=15, downstep four times:
D(x^4+3*x^2+1)=(x^3+x^2+x+1)+3(x+1)+1: (1,1,4,5) [coefficients]
DD(x^4+3*x^2+1)=D(1,1,4,5)=(1,2,11)
DDD(x^4+3*x^2+1)=D(1,2,11)=(1,14)
DDDD(x^4+3*x^2+1)=D(1,14)=15.
		

Crossrefs

Cf. A192872 (polynomial reduction), A193091 (polynomial augmentation), A193722 (the upstep operation and fusion of polynomial sequences or triangular arrays).

Programs

  • Mathematica
    q[n_, k_] := 1;
    r[0] = 1; r[k_] := Sum[q[k - 1, i] r[k - 1 - i], {i, 0, k - 1}];
    f[n_, x_] := Fibonacci[n + 1, x];
    p[n_, k_] := Coefficient[f[n, x], x, k]; (* A049310 *)
    v[n_] := Sum[p[n, k] r[n - k], {k, 0, n}]
    Table[v[n], {n, 0, 24}]    (* A193649 *)
    TableForm[Table[q[i, k], {i, 0, 4}, {k, 0, i}]]
    Table[r[k], {k, 0, 8}]  (* 2^k *)
    TableForm[Table[p[n, k], {n, 0, 6}, {k, 0, n}]]

Formula

Conjecture: G.f.: -(1+x)*(2*x-1) / ( (x-1)*(4*x^2+x-1) ). - R. J. Mathar, Feb 19 2015

A101879 a(0) = 1, a(1) = 1, a(2) = 2; for n > 2, a(n) = 5*a(n-1) - 5*a(n-2) + a(n-3).

Original entry on oeis.org

1, 1, 2, 6, 21, 77, 286, 1066, 3977, 14841, 55386, 206702, 771421, 2878981, 10744502, 40099026, 149651601, 558507377, 2084377906, 7779004246, 29031639077, 108347552061, 404358569166, 1509086724602, 5631988329241, 21018866592361, 78443478040202, 292755045568446
Offset: 0

Author

Lambert Klasen (lambert.klasen(AT)gmx.net) and Gary W. Adamson, Jan 28 2005

Keywords

Comments

Consider the matrix M=[1,1,0; 1,3,1; 0,1,1]; characteristic polynomial of M is x^3 - 5*x^2 + 5*x - 1. Use (M^n)[1,1] to define the recursion a(0) = 1, a(1) = 1, a(2) = 2, for n>2 a(n) = 5*a(n-1) - 5*a(n-2) + a(n-3).
a(n+1)/a(n) converges to 2 + sqrt(3) as n goes to infinity, the largest root of the characteristic polynomial. a(n) = A061278(n) + 1; (M^n)[1,2] = A001353(n); (M^n)[1,3] = A061278(n-1) for n>0; all with the same recursive properties.
Consecutive terms of this sequence and consecutive terms of A032908 provide all positive integer pairs for which K=(a+1)/b+(b+1)/a is an integer. For this sequence K=4. - Andrey Vyshnevyy, Sep 18 2015
The two-page Reid Barton article was sent to me around 2002, but for some reason it was not included in the OEIS at that time. I recently rediscovered it in my files. - N. J. A. Sloane, Sep 08 2018

Programs

  • Magma
    I:=[1,1,2]; [n le 3 select I[n] else 5*Self(n-1)-5*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Sep 18 2015
    
  • Mathematica
    LinearRecurrence[{5, -5, 1}, {1, 1, 2}, 30] (* Vincenzo Librandi, Sep 18 2015 *)
    CoefficientList[Series[(1 - 4 x + 2 x^2)/((1 - x) (1 - 4 x + x^2)), {x, 0, 27}], x] (* Michael De Vlieger, Aug 11 2016 *)
    a[ n_] := If[ n < 1, a[1 - n], SeriesCoefficient[ (1/(1 - x) + (1 - 3 x)/(1 - 4 x + x^2)) / 2, {x, 0, n}]]; (* Michael Somos, Jul 09 2017 *)
  • PARI
    M=[1,1,0; 1,3,1; 0,1,1]; for(i=0,40,print1((M^i)[1,1],","))
    
  • PARI
    {a(n) = if( n<1, a(1-n), polcoeff( (1/(1 - x) + (1 - 3*x)/(1 - 4*x + x^2)) / 2 + x * O(x^n), n))}; /* Michael Somos, Jul 09 2017 */

Formula

a(n) = A101265(n), n>0. - R. J. Mathar, Aug 30 2008
a(n) = A079935(n+1) - A001571(n). - Gerry Martens, Jun 05 2015
a(0) = a(1) = 1, for n>1 a(n) = (a(n-1) + a(n-1)^2) / a(n-2). - Seiichi Manyama, Aug 11 2016
From Ilya Gutkovskiy, Aug 11 2016: (Start)
G.f.: (1 - 4*x + 2*x^2)/((1 - x)*(1 - 4*x + x^2)).
a(n) = (6+(3-sqrt(3))*(2+sqrt(3))^n + (2-sqrt(3))^n*(3+sqrt(3)))/12. (End)
a(n) = 4*a(n-1) - a(n-2) - 1. - Seiichi Manyama, Aug 26 2016
From Seiichi Manyama, Sep 03 2016: (Start)
a(n) = (a(n-1) + 1)*(a(n-2) + 1) / a(n-3).
a(n) = A005246(n)*A005246(n+1). (End)
From Michael Somos, Jul 09 2017: (Start)
0 = +a(n)*(+1 +a(n) -4*a(n+1)) +a(n+1)*(+1 +a(n+1)) for all n in Z.
a(n) = a(1 - n) = (1 + A001835(n)) / 2 for all n in Z. (End)

Extensions

a(26)-a(27) from Vincenzo Librandi, Sep 18 2015

A032908 One of four 3rd-order recurring sequences for which the first derived sequence and the Galois transformed sequence coincide.

Original entry on oeis.org

2, 2, 3, 6, 14, 35, 90, 234, 611, 1598, 4182, 10947, 28658, 75026, 196419, 514230, 1346270, 3524579, 9227466, 24157818, 63245987, 165580142, 433494438, 1134903171, 2971215074, 7778742050, 20365011075, 53316291174, 139583862446, 365435296163, 956722026042
Offset: 0

Author

Michele Elia (elia(AT)polito.it)

Keywords

Comments

a(n) is also a sequence with the property that the difference between the sum and product of two consecutive terms is equal to the square of the difference between those terms, i.e., a(n)*a(n+1) - (a(n)+ a(n+1)) = (a(n) - a(n + 1))^2. The difference between those two terms, a(n + 1) - a(n) = F(2n -2), the (2n - 2)th Fibonacci number. - John Baker, May 18 2010
Conjecture: consecutive terms of this sequence and consecutive terms of A101265 provide all the positive integer solutions of (a+b)*(a+b+1) == 0 (mod (a*b)). - Robert Israel, Aug 26 2015
Conjecture is true: see Mathematics Stack Exchange link. - Robert Israel, Sep 06 2015
Consecutive terms of this sequence and consecutive terms of A101879 provide all the positive integer pairs for which K = (a+1)/b + (b+1)/a is an integer. For this sequence, K = 3. - Andrey Vyshnevyy, Sep 18 2015

References

  • L. E. Dickson, History of the Theory of Numbers, Dover, New York, 1971.

Crossrefs

Programs

  • Magma
    [2] cat [n le 1 select 2 else Floor((3*Self(n-1) + Sqrt(5*Self(n-1)^2 - 10*Self(n-1) + 1) - 1)/2): n in [1..30]]; // Vincenzo Librandi, Aug 27 2015
  • Maple
    f:= proc(n) option remember; local x;
      x:= procname(n-1); (3*x + sqrt(5*x^2 - 10*x + 1) - 1)/2 end proc:
    f(0):= 2: f(1):= 2:
    map(f, [$0..30]); # Robert Israel, Aug 26 2015
  • Mathematica
    Table[Fibonacci[2 n - 1] + 1, {n, 0, 27}] (* Michael De Vlieger, Aug 26 2015 *)
    LinearRecurrence[{4,-4,1},{2,2,3},40] (* Harvey P. Dale, Apr 11 2018 *)
  • PARI
    Vec((2-6*x+3*x^2)/(1-4*x+4*x^2-x^3)+O(x^66)) \\ Joerg Arndt, Jul 02 2013
    

Formula

G.f.: (2 - 6*x + 3*x^2)/((1 - x)*(1 - 3*x + x^2)).
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3).
a(n) = Fibonacci(2*n-1) + 1 = A001519(n) + 1. - Vladeta Jovovic, Mar 19 2003
a(n) = 3*a(n - 1) - a(n - 2) - 1. - N. Sato, Jan 21 2010
From Wolfdieter Lang, Aug 27 2014: (Start)
a(n) = 1 + S(n-1, 3) - S(n-2, 3) = 1 + A001519(n), with Chebyshev S-polynomials (see A049310). For n < 0, we have S(-1, x) = 0 and S(-2, x) = -1.
This follows from the partial fraction decomposition of the g.f., 1/(1 - x) + (1 - 2*x)/ (1 - 3*x + x^2), using the recurrence for S, or from A001519. (End)
From Robert Israel, Aug 26 2015: (Start)
(a(n) + a(n+1))*(a(n) + a(n+1) + 1) = 5*a(n)*a(n+1).
a(n+1) = (3*a(n) + sqrt(5*a(n)^2 - 10*a(n) + 1) - 1)/2 for n >= 1. (End)
a(n) = 1 + (2^(-1-n) * ((3 - sqrt(5))^n * (1 + sqrt(5)) + (-1 + sqrt(5)) * (3 + sqrt(5))^n)) / sqrt(5). - Colin Barker, Nov 02 2016
Sum_{n>=0} 1/a(n) = phi (A001622). - Amiram Eldar, Oct 05 2020
Product_{n>=1} (1 + 1/a(n)) = (3+sqrt(5))/2 = phi^2 (A104457). - Amiram Eldar, Nov 28 2024

Extensions

More terms from Ralf Stephan, Mar 10 2003
Index for Chebyshev polynomials and cross reference added by Wolfdieter Lang, Aug 27 2014

A211955 Triangle of coefficients of a polynomial sequence related to the Morgan-Voyce polynomials A085478.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 6, 10, 4, 1, 10, 30, 28, 8, 1, 15, 70, 112, 72, 16, 1, 21, 140, 336, 360, 176, 32, 1, 28, 252, 840, 1320, 1056, 416, 64, 1, 36, 420, 1848, 3960, 4576, 2912, 960, 128, 1, 45, 660, 3696, 10296, 16016, 14560, 7680, 2176, 256
Offset: 0

Author

Peter Bala, Apr 30 2012

Keywords

Comments

Let b(n,x) = Sum_{k = 0..n} binomial(n+k,2*k)*x^k denote the Morgan-Voyce polynomials of A085478. This triangle lists the coefficients (in ascending powers of x) of the related polynomial sequence R(n,x) := (1/2)*b(n,2*x) + 1/2. Several sequences already in the database are of the form (R(n,x))n>=0 for a fixed value of x. These include A101265 (x = 1), A011900 (x = 2), A182432 (x = 3), A054318 (x = 4) as well as signed versions of A133872 (x = -1), A109613(x = -2), A146983 (x = -3) and A084159 (x = -4).
The polynomials R(n,x) factorize in the ring Z[x] as R(n,x) = P(n,x)*P(n+1,x) for n >= 1: explicitly, P(2*n,x) = 1/2*(b(2*n,2*x) + 1)/b(n,2*x) and P(2*n+1,x) = b(n,2*x). The coefficients of P(n,x) occur in several tables in the database, although without the connection to the Morgan-Voyce polynomials being noted - see A211956 for more details. In terms of T(n,x), the Chebyshev polynomials of the first kind, we have P(2*n,x) = T(2*n,u) and P(2*n+1,x) = 1/u * T(2*n+1,u), where u = sqrt((x+2)/2). Hence R(n,x) = 1/u * T(n,u) * T(n+1,u).

Examples

			Triangle begins
.n\k.|..0....1....2....3....4....5....6
= = = = = = = = = = = = = = = = = = = =
..0..|..1
..1..|..1....1
..2..|..1....3....2
..3..|..1....6...10....4
..4..|..1...10...30...28....8
..5..|..1...15...70..112...72...16
..6..|..1...21..140..336..360..176...32
		

Crossrefs

Formula

T(n,0) = 1; T(n,k) = 2^(k-1)*binomial(n+k,2*k) for k > 0.
O.g.f. for column k (except column 0): 2^(k-1)*x^k/(1-x)^(2*k+1).
O.g.f.: (1-t*(x+2)+t^2)/((1-t)*(1-2*t(x+1)+t^2)) = 1 + (1+x)*t + (1+3*x+2*x^2)*t^2 + ....
Removing the first column from the triangle produces the Riordan array (x/(1-x)^3, 2*x/(1-x)^2).
The row polynomials R(n,x) := 1/2*b(n,2*x) + 1/2 = 1 + x*Sum_{k = 1..n} binomial(n+k,2*k)*(2*x)^(k-1).
Recurrence equation: R(n,x) = 2*(1+x)*R(n-1,x) - R(n-2,x) - x with initial conditions R(0,x) = 1, R(1,x) = 1+x.
Another recurrence is R(n,x)*R(n-2,x) = R(n-1,x)*(R(n-1,x) + x).
With P(n,x) as defined in the Comments section we have (x+2)/x - {Sum_{k = 0..2n} 1/R(k,x)}^2 = 2/(x*P(2*n+1,x)^2); (x+2)/x - {Sum_{k = 0..2n+1} 1/R(k,x)}^2 = (x+2)/(x*P(2*n+2,x)^2); consequently Sum_{k >= 0} 1/R(k,x) = sqrt((x+2)/x) for either x > 0 or x <= -2.
Row sums R(n,1) = A101265(n+1); Alt. row sums R(n,-1) = A133872(n+1);
R(n,2) = A011900(n); R(n,-2) = (-1)^n * A109613(n); R(n,3) = A182432;
R(n,-3) = (-1)^n * A146983(n); R(n,4) = A054318(n+1); R(n,-4) = (-1)^n * A084159(n).

A182432 Recurrence a(n)*a(n-2) = a(n-1)*(a(n-1) + 3) with a(0) = 1, a(1) = 4.

Original entry on oeis.org

1, 4, 28, 217, 1705, 13420, 105652, 831793, 6548689, 51557716, 405913036, 3195746569, 25160059513, 198084729532, 1559517776740, 12278057484385, 96664942098337, 761041479302308, 5991666892320124, 47172293659258681, 371386682381749321
Offset: 0

Author

Peter Bala, Apr 30 2012

Keywords

Comments

The non-linear recurrence equation a(n)*a(n-2) = a(n-1)*(a(n-1) + r) with initial conditions a(0) = 1, a(1) = 1 + r has the solution a(n) = 1/2 + (1/2)*Sum_{k = 0..n} (2*r)^k*binomial(n+k,2*k) = 1/2 + b(n,2*r)/2, where b(n,x) are the Morgan-Voyce polynomials of A085478. The recurrence produces sequences A101265 (r = 1), A011900 (r = 2) and A054318 (r = 4), as well as signed versions of A133872 (r = -1), A109613 (r = -2), A146983 (r = -3) and A084159(r = -4).
Also the indices of centered pentagonal numbers (A005891) which are also centered triangular numbers (A005448). - Colin Barker, Jan 01 2015
Also positive integers y in the solutions to 3*x^2 - 5*y^2 - 3*x + 5*y = 0. - Colin Barker, Jan 01 2015

Programs

  • Magma
    I:=[1, 4, 28]; [n le 3 select I[n] else 9*Self(n-1)-9*Self(n-2)+Self(n-3): n in [1..25]]; // Vincenzo Librandi, May 18 2012
    
  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==4,a[n]==(a[-1+n] (3+a[-1+n]))/a [-2+n]}, a[n],{n,30}] (* or *) LinearRecurrence[{9,-9,1},{1,4,28},30] (* Harvey P. Dale, May 14 2012 *)
  • PARI
    Vec((1-5*x+x^2)/((1-x)*(1-8*x+x^2)) + O(x^100)) \\ Colin Barker, Jan 01 2015

Formula

a(n) = 1/2 + (1/2)*Sum_{k = 0..n} 6^k*binomial(n+k,2*k).
a(n) = R(n,3) where R(n,x) denotes the row polynomials of A211955.
a(n) = (1/u)*T(n,u)*T(n+1,u) with u = sqrt(5/2) and T(n,x) the n-th Chebyshev polynomial of the first kind.
Recurrence equation: a(n) = 8*a(n-1) - a(n-2) - 3 with a(0) = 1 and a(1) = 4.
O.g.f.: (1 - 5*x + x^2)/((1 - x)*(1 - 8*x + x^2)) = 1 + 4*x + 28*x^2 + ....
Sum_{n >= 0} 1/a(n) = sqrt(5/3); 5 - 3*(Sum_{k = 0..2*n} 1/a(k))^2 = 2/A070997(n)^2.
a(0) = 1, a(1) = 4, a(2) = 28, a(n) = 9*a(n-1) - 9*a(n-2) + a(n-3). - Harvey P. Dale, May 14 2012

A102871 a(n) = a(n-3) - 5*a(n-2) + 5*a(n-1), a(0) = 1, a(1) = 3, a(2) = 10.

Original entry on oeis.org

1, 3, 10, 36, 133, 495, 1846, 6888, 25705, 95931, 358018, 1336140, 4986541, 18610023, 69453550, 259204176, 967363153, 3610248435, 13473630586, 50284273908, 187663465045, 700369586271, 2613814880038, 9754889933880, 36405744855481, 135868089488043, 507066613096690
Offset: 0

Author

Creighton Dement, Mar 01 2005

Keywords

Comments

A floretion-generated sequence resulting from a particular transform of the periodic sequence (-1,1).
Floretion Algebra Multiplication Program, FAMP Code: .5em[J* ]forseq[ .25( 'i + 'j + 'k + i' + j' + k' + 'ii' + 'jj' + 'kk' + 'ij' + 'ik' + 'ji' + 'jk' + 'ki' + 'kj' + e ) ], em[J]forseq = A001834, vesforseq = (1,-1,1,-1). ForType 1A. Identity used: em[J]forseq + em[J* ]forseq = vesforseq.
Also indices of the centered triangular numbers which are triangular numbers - Richard Choulet, Oct 09 2007
Place a(n) red and b(n) blue balls in an urn; draw 2 balls without replacement. Probability(2 red balls) = 3*Probability(2 blue balls); b(n)=A101265(n). - Paul Weisenhorn, Aug 02 2010

Examples

			For n=5, a(5)=495; b(5)=286; binomial(495,2) = 122265 = 3*binomial(286,2). - _Paul Weisenhorn_, Aug 02 2010
		

Crossrefs

Cf. A001075 (first differences), A001834, A082841, A101265.

Programs

  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=4*a[n-1]-a[n-2]-1 od: seq(a[n], n=1..23); # Zerinvary Lajos, Mar 08 2008
  • Mathematica
    LinearRecurrence[{5,-5,1},{1,3,10},30] (* Harvey P. Dale, Oct 04 2011 *)

Formula

2*a(n) - A001834(n) = (-1)^(n+1); a(n) = 4*a(n-1) - a(n) - 1;
G.f.: (2*x-1)/((x-1)*(x^2-4*x+1)).
Superseeker results: a(n+2) - 2a(n+1) + a(n) = A001834(n+1) (from this and the first relation involving A001834 it follows that 4a(n+1) - a(n+2) - a(n) = (-1)^n as well as the recurrence relation given for A001834 ); a(n+1) - a(n) = A001075(n+1); a(n+2) - a(n) = A082841(n+1).
a(j+3) - 3*a(j+2) - 3*a(j+1) + a(j) = -2 for all j.
a(n+1) = 2*a(n) - 1/2 + (1/2)*(12*a(n)^2 - 12*a(n) + 9)^(1/2). - Richard Choulet, Oct 09 2007
a(n) = (sqrt(12*b(n)*(b(n)-1) + 1) + 1)/2; b(n) = A101265(n). - Paul Weisenhorn, Aug 02 2010
a(n) = A001571(n) + 1. - Johannes Boot, Jun 17 2011
E.g.f.: (exp(2*x)*(cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)) + cosh(x) + sinh(x))/2. - Stefano Spezia, Sep 19 2023
Showing 1-10 of 13 results. Next