A084608
Triangle, read by rows, where the n-th row lists the (2n+1) coefficients of (1+2*x+3*x^2)^n.
Original entry on oeis.org
1, 1, 2, 3, 1, 4, 10, 12, 9, 1, 6, 21, 44, 63, 54, 27, 1, 8, 36, 104, 214, 312, 324, 216, 81, 1, 10, 55, 200, 530, 1052, 1590, 1800, 1485, 810, 243, 1, 12, 78, 340, 1095, 2712, 5284, 8136, 9855, 9180, 6318, 2916, 729, 1, 14, 105, 532, 2009, 5922, 13993, 26840, 41979
Offset: 0
Triangle begins:
1;
1, 2, 3;
1, 4, 10, 12, 9;
1, 6, 21, 44, 63, 54, 27;
1, 8, 36, 104, 214, 312, 324, 216, 81;
1, 10, 55, 200, 530, 1052, 1590, 1800, 1485, 810, 243;
-
a084608 n = a084608_list !! n
a084608_list = concat $ iterate ([1,2,3] *) [1]
instance Num a => Num [a] where
fromInteger k = [fromInteger k]
(p:ps) + (q:qs) = p + q : ps + qs
ps + qs = ps ++ qs
(p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs
* = []
-- Reinhard Zumkeller, Apr 02 2011
-
A084608:= func< n,k | (&+[Binomial(n, k-j)*Binomial(k-j, j)*2^(k-2*j)*3^j: j in [0..k]]) >;
[A084608(n,k): k in [0..2*n], n in [0..13]]; // G. C. Greubel, Mar 27 2023
-
f:= proc(n) option remember; expand((1+2*x+3*x^2)^n) end:
T:= (n,k)-> coeff(f(n), x, k):
seq(seq(T(n, k), k=0..2*n), n=0..10); # Alois P. Heinz, Apr 03 2011
-
row[n_] := (1+2x+3x^2)^n + O[x]^(2n+1) // CoefficientList[#, x]&; Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 01 2017 *)
-
for(n=0,10, for(k=0,2*n,t=polcoeff((1+2*x+3*x^2)^n,k,x); print1(t",")); print(" "))
-
def A084608(n,k): return sum(binomial(n,j)*binomial(n-j,k-2*j)*2^(k-2*j)*3^j for j in range(k//2+1))
flatten([[A084608(n,k) for k in range(2*n+1)] for n in range(14)]) # G. C. Greubel, Mar 27 2023
A380886
Triangle T(n,k), 1<=k<=n: column k are the coefficients of the INVERT transform of Sum_{i=1..k} i*x^i.
Original entry on oeis.org
1, 1, 3, 1, 5, 8, 1, 11, 17, 21, 1, 21, 42, 50, 55, 1, 43, 100, 128, 138, 144, 1, 85, 235, 323, 358, 370, 377, 1, 171, 561, 813, 923, 965, 979, 987, 1, 341, 1331, 2043, 2378, 2510, 2559, 2575, 2584, 1, 683, 3158, 5150, 6125, 6527, 6681, 6737, 6755, 6765, 1, 1365, 7503, 12967, 15772, 16972, 17441, 17617, 17680, 17700, 17711
Offset: 1
The full array starts
1 1 1 1 1 1 1 1 1 1
1 3 3 3 3 3 3 3 3 3
1 5 8 8 8 8 8 8 8 8
1 11 17 21 21 21 21 21 21 21
1 21 42 50 55 55 55 55 55 55
1 43 100 128 138 144 144 144 144 144
1 85 235 323 358 370 377 377 377 377
1 171 561 813 923 965 979 987 987 987
1 341 1331 2043 2378 2510 2559 2575 2584 2584
1 683 3158 5150 6125 6527 6681 6737 6755 6765
but the non-interesting upper right triangular part is not put into the sequence.
-
A380886 := proc(n,k)
local g,x ;
g := 1/(1-add(i*x^i,i=1..k)) ;
coeftayl(g,x=0,n) ;
end proc:
seq(seq( A380886(n,k),k=1..n),n=1..12) ;
A100550
a(n) = a(n-1) + 2*a(n-2) + 3*a(n-3), for n>3, otherwise a(n) = n.
Original entry on oeis.org
0, 1, 2, 4, 11, 25, 59, 142, 335, 796, 1892, 4489, 10661, 25315, 60104, 142717, 338870, 804616, 1910507, 4536349, 10771211, 25575430, 60726899, 144191392, 342371480, 812934961, 1930252097, 4583236459, 10882545536, 25839774745, 61354575194
Offset: 0
gamo (gamo(AT)telecable.es), Nov 27 2004
- Harold Abelson and Gerald Jay Sussman with Julie Sussman, Structure and Interpretation of Computer Programs, MIT Press, 1996.
-
[n le 3 select n-1 else Self(n-1) +2*Self(n-2) +3*Self(n-3): n in [1..41]]; // G. C. Greubel, Mar 27 2023
-
LinearRecurrence[{1,2,3},{0,1,2},40] (* Harvey P. Dale, Mar 19 2023 *)
-
perl -e '@a=(0,1,2);for(3..30){$a[$]=$a[$-1]+2*$a[$-2]+3*$a[$-3];} print "@a ";'
-
@CachedFunction
def a(n): # a = A100550
if (n<3): return n
else: return a(n-1) + 2*a(n-2) + 3*a(n-3)
[a(n) for n in range(41)] # G. C. Greubel, Mar 27 2023
A213947
Triangle read by rows: columns are finite differences of the INVERT transform of (1, 2, 3, ...) terms.
Original entry on oeis.org
1, 1, 2, 1, 4, 3, 1, 10, 6, 4, 1, 20, 21, 8, 5, 1, 42, 57, 28, 10, 6, 1, 84, 150, 88, 35, 12, 7, 1, 170, 390, 252, 110, 42, 14, 8, 1, 340, 990, 712, 335, 132, 49, 16, 9, 1, 682, 2475, 1992, 975, 402, 154, 56, 18, 10
Offset: 1
First few rows of the triangle:
1;
1, 2;
1, 4, 3;
1, 10, 6, 4;
1, 20, 21, 8, 5;
1, 42, 57, 28, 10, 6;
1, 84, 150, 88, 35, 12, 7;
1, 170, 390, 252, 110, 42, 14, 8;
1, 340, 990, 712, 335, 132, 49, 16, 9;
1, 682, 2475, 1992, 975, 402, 154, 56, 18, 10;
1, 1364, 6138, 5464, 2805, 1200, 469, 176, 63, 20, 11;
...
-
read("transforms") ;
A213947i := proc(n,k)
L := [seq(i,i=1..n),seq(0,i=0..k)] ;
INVERT(L) ;
op(k,%) ;
end proc:
A213947 := proc(n,k)
if k = 1 then
1;
else
A213947i(k,n)-A213947i(k-1,n) ;
end if;
end proc: # R. J. Mathar, Jun 30 2012
A366942
Expansion of e.g.f. 1/(1-x-2*x^2-3*x^3).
Original entry on oeis.org
1, 1, 6, 48, 408, 5040, 72000, 1184400, 22619520, 482993280, 11459750400, 299495750400, 8531976499200, 263353163673600, 8754879893760000, 311808414677760000, 11845876873678848000, 478163414336864256000, 20436460099541950464000, 921972301728418676736000
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*binomial(n, j)*j!*j, j=1..min(3, n)))
end:
seq(a(n), n=0..19); # Alois P. Heinz, Dec 14 2023
-
With[{m = 20}, Range[0, m]! * CoefficientList[Series[1/(1 - x - 2*x^2 - 3*x^3), {x, 0, m}], x]] (* Amiram Eldar, Oct 30 2023 *)
-
my(x='x+O('x^25)); Vec(serlaplace(1/(1-x-2*x^2-3*x^3))) \\ Michel Marcus, Oct 30 2023
Showing 1-5 of 5 results.
Comments