cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A062153 a(n) = floor(log_3(n)).

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 1

Views

Author

Henry Bottomley, Jun 06 2001

Keywords

Crossrefs

Programs

Formula

a(n) = (number of digits of n when written in base 3) - 1.
a(n) = if n > 2 then a(floor(n / 3)) + 1 else 0. - Reinhard Zumkeller, Oct 29 2001
G.f.: (1/(1 - x))*Sum_{k>=1} x^(3^k). - Ilya Gutkovskiy, Jan 08 2017

A258996 Permutation of the positive integers: this permutation transforms the enumeration system of positive irreducible fractions A002487/A002487' (Calkin-Wilf) into the enumeration system A162911/A162912 (Drib), and vice versa.

Original entry on oeis.org

1, 2, 3, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13, 26, 27, 24, 25, 30, 31, 28, 29, 18, 19, 16, 17, 22, 23, 20, 21, 42, 43, 40, 41, 46, 47, 44, 45, 34, 35, 32, 33, 38, 39, 36, 37, 58, 59, 56, 57, 62, 63, 60, 61, 50, 51, 48, 49, 54, 55, 52, 53
Offset: 1

Views

Author

Yosu Yurramendi, Jun 16 2015

Keywords

Comments

As A258746 the permutation is self-inverse. Except for fixed points 1, 2, 3 it consists completely of 2-cycles: (4,6), (5,7), (8,10), (9,11), (12,14), (13,15), (16,26), (17,27), ..., (21,31), ..., (32,42), ... . - Yosu Yurramendi, Mar 31 2016
When terms of sequence |n - a(n)|/2 (n > 3) are considered only once, and they are sorted in increasing order, A147992 is obtained. - Yosu Yurramendi, Apr 05 2016

Crossrefs

Cf. A092569, A117120, A258746. Similar R-programs: A332769, A284447.

Programs

  • R
    maxlevel <- 5 # by choice
    a <- 1
    for(m in 0:maxlevel) for(k in 0:(2^m-1)){
      a[2^(m+1) + 2*k    ] = 2*a[2^(m+1) - 1 - k]
      a[2^(m+1) + 2*k + 1] = 2*a[2^(m+1) - 1 - k] + 1}
    a
    
  • R
    # Given n, compute a(n) by taking into account the binary representation of n
    maxblock <- 7 # by choice
    a <- 1:3
    for(n in 4:2^maxblock){
      ones <- which(as.integer(intToBits(n)) == 1)
      nbit <- as.integer(intToBits(n))[1:tail(ones, n = 1)]
      anbit <- nbit
      anbit[seq(2, length(anbit) - 1, 2)] <- 1 - anbit[seq(2, length(anbit) - 1, 2)]
      a <- c(a, sum(anbit*2^(0:(length(anbit) - 1))))
    }
    a
    # Yosu Yurramendi, Mar 30 2021

Formula

a(1) = 1, a(2) = 2, a(3) = 3. For n = 2^m + k, m > 1, 0 <= k < 2^m. If m is even, then a(2^(m+1)+k) = a(2^m + k) + 2^m and a(2^(m+1) + 2^m+k) = a(2^m+k) + 2^(m+1). If m is odd, then a(2^(m+1) + k) = a(2^m+k) + 2^(m+1) and a(2^(m+1) + 2^m+k) = a(2^m+k) + 2^m.
From Yosu Yurramendi, Mar 23 2017: (Start)
A258746(a(n)) = a(A258746(n)), n > 0.
A092569(a(n)) = a(A092569(n)), n > 0.
A117120(a(n)) = a(A117120(n)), n > 0;
A065190(a(n)) = a(A065190(n)), n > 0;
A054429(a(n)) = a(A054429(n)), n > 0;
A063946(a(n)) = a(A063946(n)), n > 0. (End)
a(1) = 1, for m >= 0 and 0 <= k < 2^m, a(2^(m+1) + 2*k) = 2*a(2^(m+1) - 1 - k), a(2^(m+1) + 2*k + 1) = 2*a(2^(m+1) - 1 - k) + 1. - Yosu Yurramendi, May 23 2020
a(n) = A020988(A102572(n)) XOR n. - Alan Michael Gómez Calderón, Mar 11 2025

A212445 a(n) = floor( n + log(n) ).

Original entry on oeis.org

1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70
Offset: 1

Views

Author

Mohammad K. Azarian, May 17 2012

Keywords

Comments

Complement of A045650. - Michel Marcus, Jun 30 2015

Crossrefs

Programs

A115304 a(n) = n if n < 4, otherwise 4*a(floor(n/4)) + 3 - n mod 4.

Original entry on oeis.org

1, 2, 3, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 127, 126, 125, 124, 123, 122, 121
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 20 2006

Keywords

Comments

Self-inverse permutation of the natural numbers.
If n is written in base-4 representation, then a(n) is the value after replacing all digits d (except for the leading one) by 3-d.

Crossrefs

Programs

Formula

a(n) = A115310(n+2,3).
a(n) = n XOR (4^A102572(n) - 1). - Alan Michael Gómez Calderón, Mar 27 2025
a(a(n)) = n. - A.H.M. Smeets, Apr 01 2025

A212454 Ceiling(5n + log(5n)).

Original entry on oeis.org

7, 13, 18, 23, 29, 34, 39, 44, 49, 54, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 206, 211, 216, 221, 226, 231, 236, 241, 246, 251, 256, 261, 266, 271, 276, 281
Offset: 1

Views

Author

Mohammad K. Azarian, May 17 2012

Keywords

Crossrefs

Programs

  • Magma
    [Ceiling(5*n + Log(5*n)): n in [1..80]]; // Vincenzo Librandi, Feb 14 2013
  • Mathematica
    Table[Ceiling[5*n + Log[5*n]], {n, 100}] (* T. D. Noe, May 21 2012 *)

A212453 a(n) = ceiling(4n + log(4n)).

Original entry on oeis.org

6, 11, 15, 19, 23, 28, 32, 36, 40, 44, 48, 52, 56, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 158, 162, 166, 170, 174, 178, 182, 186, 190, 194, 198, 202, 206, 210, 214, 218, 222, 226, 230
Offset: 1

Views

Author

Mohammad K. Azarian, May 17 2012

Keywords

Crossrefs

Programs

  • Magma
    [Ceiling(4*n + Log(4*n)): n in [1..80]]; // Vincenzo Librandi, Feb 14 2013
  • Mathematica
    Table[Ceiling[4*n + Log[4*n]], {n, 100}] (* T. D. Noe, May 21 2012 *)

A212451 Ceiling(2n + log(2n)).

Original entry on oeis.org

3, 6, 8, 11, 13, 15, 17, 19, 21, 23, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129
Offset: 1

Views

Author

Mohammad K. Azarian, May 17 2012

Keywords

Crossrefs

Programs

  • Magma
    [Ceiling(2*n + Log(2*n)): n in [1..80]]; // Vincenzo Librandi, Feb 14 2013
  • Mathematica
    Table[Ceiling[2*n + Log[2*n]], {n, 100}] (* T. D. Noe, May 21 2012 *)

A212452 Ceiling(3n + log(3n)).

Original entry on oeis.org

5, 8, 12, 15, 18, 21, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, 101, 104, 107, 110, 113, 116, 119, 122, 125, 128, 131, 134, 137, 140, 143, 146, 149, 152, 156, 159, 162, 165, 168, 171, 174, 177, 180
Offset: 1

Views

Author

Mohammad K. Azarian, May 17 2012

Keywords

Crossrefs

Programs

  • Magma
    [Ceiling(3*n + Log(3*n)): n in [1..80]]; // Vincenzo Librandi, Feb 14 2013
  • Mathematica
    Table[Ceiling[3*n + Log[3*n]], {n, 100}] (* T. D. Noe, May 21 2012 *)

A212446 Floor(2n + log(2n)).

Original entry on oeis.org

2, 5, 7, 10, 12, 14, 16, 18, 20, 22, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128
Offset: 1

Views

Author

Mohammad K. Azarian, May 17 2012

Keywords

Crossrefs

Programs

A212447 a(n) = floor(3n + log(3n)).

Original entry on oeis.org

4, 7, 11, 14, 17, 20, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 155, 158, 161, 164, 167, 170, 173, 176, 179
Offset: 1

Views

Author

Mohammad K. Azarian, May 17 2012

Keywords

Crossrefs

Programs

Showing 1-10 of 15 results. Next