cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 29 results. Next

A081604 Number of digits in ternary representation of n.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 23 2003

Keywords

Comments

a(n) is the length of row n in table A054635. - Reinhard Zumkeller, Sep 05 2014

Examples

			a(8) = 2 because 8 = 22_3, having 2 digits.
a(9) = 3 because 9 = 100_3, having 3 digits.
		

Crossrefs

Programs

  • Haskell
    a081604 n = if n < 3 then 1 else a081604 (div n 3) + 1
    -- Reinhard Zumkeller, Sep 05 2014, Feb 21 2013
  • Maple
    A081604 := proc(n)
        max(1,1+ilog[3](n)) ;
    end proc: # R. J. Mathar, Jul 12 2016
  • Mathematica
    Table[Length[IntegerDigits[n, 3]], {n, 0, 99}] (* Alonso del Arte, Dec 30 2012 *)
    Join[{1},IntegerLength[Range[120],3]] (* Harvey P. Dale, Apr 07 2019 *)

Formula

a(n) = A062153(n) + 1 for n >= 1.
a(n) = A077267(n) + A062756(n) + A081603(n);
From Reinhard Zumkeller, Oct 19 2007: (Start)
0 <= A134021(n) - a(n) <= 1;
a(A134025(n)) = A134021(A134025(n));
a(A134026(n)) = A134021(A134026(n)) - 1. (End)
a(n+1) = -Sum_{k=1..n} mu(3*k)*floor(n/k). - Benoit Cloitre, Oct 21 2009
a(n) = floor(log_3(n)) + 1. - Can Atilgan and Murat Erşen Berberler, Dec 05 2012
a(n) = if n < 3 then 1 else a(floor(n/3)) + 1. - Reinhard Zumkeller, Sep 05 2014
G.f.: 1 + (1/(1 - x))*Sum_{k>=0} x^(3^k). - Ilya Gutkovskiy, Jan 08 2017

A117967 Positive part of inverse of A117966; write n in balanced ternary and then replace (-1)'s with 2's.

Original entry on oeis.org

0, 1, 5, 3, 4, 17, 15, 16, 11, 9, 10, 14, 12, 13, 53, 51, 52, 47, 45, 46, 50, 48, 49, 35, 33, 34, 29, 27, 28, 32, 30, 31, 44, 42, 43, 38, 36, 37, 41, 39, 40, 161, 159, 160, 155, 153, 154, 158, 156, 157, 143, 141, 142, 137, 135, 136, 140, 138, 139, 152, 150, 151, 146
Offset: 0

Views

Author

Keywords

Examples

			7 in balanced ternary is 1(-1)1, changing to 121 ternary is 16, so a(7)=16.
		

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 2, pp. 173-175

Crossrefs

Cf. A117966. a(n) = A004488(A117968(n)). Bisection of A140263. A140267 gives the same sequence in ternary.

Programs

  • Maple
    a:= proc(n) local d, i, m, r; m:=n; r:=0;
          for i from 0 while m>0 do
             d:= irem(m, 3, 'm');
             if d=2 then m:=m+1 fi;
             r:= r+d*3^i
          od; r
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, May 11 2015
  • Mathematica
    a[n_] := Module[{d, i, m = n, r = 0}, For[i = 0, m > 0, i++, {m, d} = QuotientRemainder[m, 3]; If[d == 2, m++]; r = r + d*3^i]; r];
    a /@ Range[0, 100] (* Jean-François Alcover, Jan 05 2021, after Alois P. Heinz *)
  • Python
    from sympy.ntheory.factor_ import digits
    def a004488(n): return int("".join([str((3 - i)%3) for i in digits(n, 3)[1:]]), 3)
    def a117968(n):
        if n==1: return 2
        if n%3==0: return 3*a117968(n/3)
        elif n%3==1: return 3*a117968((n - 1)/3) + 2
        else: return 3*a117968((n + 1)/3) + 1
    def a(n): return 0 if n==0 else a004488(a117968(n)) # Indranil Ghosh, Jun 06 2017
  • Scheme
    ;; Two alternative definitions in MIT/GNU Scheme, defined for whole Z:
    (define (A117967 z) (cond ((zero? z) 0) ((negative? z) (A004488 (A117967 (- z)))) (else (let* ((lp3 (expt 3 (A062153 z))) (np3 (* 3 lp3))) (if (< (* 2 z) np3) (+ lp3 (A117967 (- z lp3))) (+ np3 (A117967 (- z np3))))))))
    (define (A117967v2 z) (cond ((zero? z) 0) ((negative? z) (A004488 (A117967v2 (- z)))) ((zero? (modulo z 3)) (* 3 (A117967v2 (/ z 3)))) ((= 1 (modulo z 3)) (+ (* 3 (A117967v2 (/ (- z 1) 3))) 1)) (else (+ (* 3 (A117967v2 (/ (+ z 1) 3))) 2))))
    ;; Antti Karttunen, May 19 2008
    

Formula

a(0) = 0, a(3n) = 3a(n), a(3n+1) = 3a(n)+1, a(3n-1) = 3a(n)+2.
If one adds this clause, then the function is defined on the whole Z: If n<0, then a(n) = A004488(a(-n)) (or equivalently: a(n) = A117968(-n)) and then it holds that a(A117966(n)) = n. - Antti Karttunen, May 19 2008

A102572 a(n) = floor(log_4(n)).

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 2006

Keywords

Crossrefs

Programs

  • Magma
    [ Ilog(4,n) : n in [1..150] ];
    
  • PARI
    a(n)=#digits(n,4)-1 \\ Twice as fast as a(n)=for(i=0,n,(n>>=2)||return(i)); the naïve code a(n)=log(n)\log(4) works for standard realprecision=28 only up to n=4^47-5 and it is slower by another factor 2. - M. F. Hasler, Mar 11 2015
    
  • PARI
    A102572(n)=logint(n,4) \\ M. F. Hasler, Nov 07 2019

Formula

G.f.: (1/(1 - x))*Sum_{k>=1} x^(4^k). - Ilya Gutkovskiy, Jan 08 2017

A212445 a(n) = floor( n + log(n) ).

Original entry on oeis.org

1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70
Offset: 1

Views

Author

Mohammad K. Azarian, May 17 2012

Keywords

Comments

Complement of A045650. - Michel Marcus, Jun 30 2015

Crossrefs

Programs

A081134 Distance to nearest power of 3.

Original entry on oeis.org

0, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7
Offset: 1

Views

Author

Klaus Brockhaus, Mar 08 2003

Keywords

Examples

			a(7) = 2 since 9 is closest power of 3 to 7 and 9 - 7 = 2.
		

Crossrefs

Programs

  • Maple
    a:= n-> (h-> min(n-h, 3*h-n))(3^ilog[3](n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Mar 28 2021
  • Mathematica
    Flatten[Table[Join[Range[0,3^n],Range[3^n-1,1,-1]],{n,0,4}]] (* Harvey P. Dale, Dec 31 2013 *)
  • PARI
    a(n) = my (p=#digits(n,3)); return (min(n-3^(p-1), 3^p-n)) \\ Rémy Sigrist, Mar 24 2018
    
  • Python
    def A081134(n):
        kmin, kmax = 0,1
        while 3**kmax <= n:
            kmax *= 2
        while True:
            kmid = (kmax+kmin)//2
            if 3**kmid > n:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return min(n-3**kmin, 3*3**kmin-n) # Chai Wah Wu, Mar 31 2021

Formula

a(n) = min(n-3^floor(log(n)/log(3)), 3*3^floor(log(n)/log(3))-n).
From Peter Bala, Sep 30 2022: (Start)
a(n) = n - A006166(n); a(n) = 2*n - A003605(n).
a(1) = 0, a(2) = 1, a(3) = 0; thereafter, a(3*n) = 3*a(n), a(3*n+1) = 2*a(n) + a(n+1) and a(3*n+2) = a(n) + 2*a(n+1). (End)

A212454 Ceiling(5n + log(5n)).

Original entry on oeis.org

7, 13, 18, 23, 29, 34, 39, 44, 49, 54, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 206, 211, 216, 221, 226, 231, 236, 241, 246, 251, 256, 261, 266, 271, 276, 281
Offset: 1

Views

Author

Mohammad K. Azarian, May 17 2012

Keywords

Crossrefs

Programs

  • Magma
    [Ceiling(5*n + Log(5*n)): n in [1..80]]; // Vincenzo Librandi, Feb 14 2013
  • Mathematica
    Table[Ceiling[5*n + Log[5*n]], {n, 100}] (* T. D. Noe, May 21 2012 *)

A212453 a(n) = ceiling(4n + log(4n)).

Original entry on oeis.org

6, 11, 15, 19, 23, 28, 32, 36, 40, 44, 48, 52, 56, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 158, 162, 166, 170, 174, 178, 182, 186, 190, 194, 198, 202, 206, 210, 214, 218, 222, 226, 230
Offset: 1

Views

Author

Mohammad K. Azarian, May 17 2012

Keywords

Crossrefs

Programs

  • Magma
    [Ceiling(4*n + Log(4*n)): n in [1..80]]; // Vincenzo Librandi, Feb 14 2013
  • Mathematica
    Table[Ceiling[4*n + Log[4*n]], {n, 100}] (* T. D. Noe, May 21 2012 *)

A212451 Ceiling(2n + log(2n)).

Original entry on oeis.org

3, 6, 8, 11, 13, 15, 17, 19, 21, 23, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129
Offset: 1

Views

Author

Mohammad K. Azarian, May 17 2012

Keywords

Crossrefs

Programs

  • Magma
    [Ceiling(2*n + Log(2*n)): n in [1..80]]; // Vincenzo Librandi, Feb 14 2013
  • Mathematica
    Table[Ceiling[2*n + Log[2*n]], {n, 100}] (* T. D. Noe, May 21 2012 *)

A212452 Ceiling(3n + log(3n)).

Original entry on oeis.org

5, 8, 12, 15, 18, 21, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, 101, 104, 107, 110, 113, 116, 119, 122, 125, 128, 131, 134, 137, 140, 143, 146, 149, 152, 156, 159, 162, 165, 168, 171, 174, 177, 180
Offset: 1

Views

Author

Mohammad K. Azarian, May 17 2012

Keywords

Crossrefs

Programs

  • Magma
    [Ceiling(3*n + Log(3*n)): n in [1..80]]; // Vincenzo Librandi, Feb 14 2013
  • Mathematica
    Table[Ceiling[3*n + Log[3*n]], {n, 100}] (* T. D. Noe, May 21 2012 *)

A212446 Floor(2n + log(2n)).

Original entry on oeis.org

2, 5, 7, 10, 12, 14, 16, 18, 20, 22, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128
Offset: 1

Views

Author

Mohammad K. Azarian, May 17 2012

Keywords

Crossrefs

Programs

Showing 1-10 of 29 results. Next