A102661 Triangle of partial sums of Stirling numbers of 2nd kind (A008277): T(n,k) = Sum_{i=1..k} Stirling2(n,i), 1<=k<=n.
1, 1, 2, 1, 4, 5, 1, 8, 14, 15, 1, 16, 41, 51, 52, 1, 32, 122, 187, 202, 203, 1, 64, 365, 715, 855, 876, 877, 1, 128, 1094, 2795, 3845, 4111, 4139, 4140, 1, 256, 3281, 11051, 18002, 20648, 21110, 21146, 21147, 1, 512, 9842, 43947, 86472, 109299, 115179, 115929, 115974, 115975
Offset: 1
Examples
Triangle begins: 1; 1, 2; 1, 4, 5; 1, 8, 14, 15; 1, 16, 41, 51, 52; ...
References
- Richard Stanley, Enumerative Combinatorics, Cambridge Univ. Press, 1997 page 38. (#7 of the twelvefold ways)
Links
- Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened
- John R. Britnell and Mark Wildon, Bell numbers, partition moves and the eigenvalues of the random-to-top shuffle in Dynkin Types A, B and D, arXiv:1507.04803 [math.CO], 2015.
- T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]
- OEIS Wiki, Sorting numbers
Programs
-
Haskell
a102661 n k = a102661_tabl !! (n-1) !! (k-1) a102661_row n = a102661_tabl !! (n-1) a102661_tabl = map (scanl1 (+) . tail) $ tail a048993_tabl -- Reinhard Zumkeller, Jun 19 2015
-
Maple
with(combinat): A102661_row := proc(n) local k,j; seq(add(stirling2(n,j),j=1..k),k=1..n) end: seq(print(A102661_row(r)),r=1..6); # Peter Luschny, Sep 30 2011
-
Mathematica
Table[Table[Sum[StirlingS2[n, i], {i, 1, k}], {k, 1, n}], {n, 1,10}] // Grid (* Geoffrey Critzer, Mar 22 2011*) Table[Accumulate[StirlingS2[n,Range[n]]],{n,10}]//Flatten (* Harvey P. Dale, Oct 28 2019 *)
-
PARI
tabl(nn) = {for (n=1, nn, for (k=1, n, print1(sum(i=1, k, stirling(n,i, 2)), ", ");); print(););} \\ Michel Marcus, Aug 10 2015
-
Sage
def T(n,k): return sum([stirling_number2(n,j) for j in range(1,k+1)]) # Danny Rorabaugh, Oct 13 2015
Formula
E.g.f. for row polynomials s(n,y) = Sum_{k=0..n} a(n,k)*y^k is (y*e^(e^(x*y)-1)- e^(y*(e^x-1)))/(y-1) - 1. - Robert Israel, Aug 10 2015
Comments