cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A102928 Numerator of the harmonic mean of the first n positive integers.

Original entry on oeis.org

1, 4, 18, 48, 300, 120, 980, 2240, 22680, 25200, 304920, 332640, 4684680, 5045040, 5405400, 11531520, 208288080, 73513440, 1474352880, 62078016, 108636528, 113809696, 2736605872, 8566766208, 223092870000, 232016584800
Offset: 1

Views

Author

Eric W. Weisstein, Jan 19 2005

Keywords

Comments

See A175441 - denominators of the harmonic means of the first n positive integers. - Jaroslav Krizek, May 16 2010
a(n) is also the denominator of H(n-1)/n + 1/n^2 = -Integral_{x=0..1} x^n*log(1-x) with H(n) = A001008(n)/A002805(n) the harmonic number of order n. - Groux Roland, Jan 08 2011 [corrected by Gary Detlefs, Oct 06 2011]
Equivalently, a(n) is the reduced denominator of the arithmetic mean of the reciprocals of the first n positive integers (corresponding reduced numerator is A175441(n)). - Rick L. Shepherd, Jun 15 2014
n divides a(n) iff n is not from the sequence A256102. - Wolfdieter Lang, Apr 23 2015

Examples

			1, 4/3, 18/11, 48/25, 300/137, 120/49, 980/363, 2240/761, ...
Division property: The first n not dividing a(n) is 20 because 20 = A256102(1). Indeed, a(20) = 62078016. - _Wolfdieter Lang_, Apr 23 2015
		

Crossrefs

Programs

  • Mathematica
    Table[Numerator[n/HarmonicNumber[n]], {n, 26}]
  • PARI
    a(n) = numerator(n/sum(k=1, n, 1/k)); \\ Michel Marcus, Jul 29 2022

Formula

a(n) = denominator(EulerGamma/n + PolyGamma(0, 1 + n)/n). - Artur Jasinski, Nov 02 2008
a(n) = numerator(n/H(n)), where H(n) is the n-th harmonic number. - Gary Detlefs, Sep 10 2011
a(n) = denominator((1/n)*Sum_{k=1..n} k + 1/k). - Stefano Spezia, Jul 27 2022
a(n) = denominator(Sum_{k>0} 1/(k*(k+n))). - Mohammed Yaseen, Jun 23 2024

Extensions

Definition edited by N. J. A. Sloane, Jan 24 2024