A102928 Numerator of the harmonic mean of the first n positive integers.
1, 4, 18, 48, 300, 120, 980, 2240, 22680, 25200, 304920, 332640, 4684680, 5045040, 5405400, 11531520, 208288080, 73513440, 1474352880, 62078016, 108636528, 113809696, 2736605872, 8566766208, 223092870000, 232016584800
Offset: 1
Examples
1, 4/3, 18/11, 48/25, 300/137, 120/49, 980/363, 2240/761, ... Division property: The first n not dividing a(n) is 20 because 20 = A256102(1). Indeed, a(20) = 62078016. - _Wolfdieter Lang_, Apr 23 2015
Links
- Stefano Spezia, Table of n, a(n) for n = 1..2000
- Eric Weisstein's World of Mathematics, Harmonic Mean
Programs
-
Mathematica
Table[Numerator[n/HarmonicNumber[n]], {n, 26}]
-
PARI
a(n) = numerator(n/sum(k=1, n, 1/k)); \\ Michel Marcus, Jul 29 2022
Formula
a(n) = denominator(EulerGamma/n + PolyGamma(0, 1 + n)/n). - Artur Jasinski, Nov 02 2008
a(n) = numerator(n/H(n)), where H(n) is the n-th harmonic number. - Gary Detlefs, Sep 10 2011
a(n) = denominator((1/n)*Sum_{k=1..n} k + 1/k). - Stefano Spezia, Jul 27 2022
a(n) = denominator(Sum_{k>0} 1/(k*(k+n))). - Mohammed Yaseen, Jun 23 2024
Extensions
Definition edited by N. J. A. Sloane, Jan 24 2024
Comments