cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A139331 Triangle read by rows: ConvOffsStoT transform of A103505.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 6, 12, 6, 1, 1, 12, 72, 72, 12, 1, 1, 20, 240, 720, 240, 20, 1, 1, 30, 600, 3600, 3600, 600, 30, 1, 1, 56, 1680, 16800, 33600, 16800, 1680, 56, 1, 1, 72, 4032, 60480, 201600, 201600, 60480, 4032, 72, 1
Offset: 0

Views

Author

Gary W. Adamson and Roger L. Bagula, Apr 13 2008

Keywords

Examples

			First few rows of the triangle are:
1;
1, 1;
1, 1, 1;
1, 2, 2, 1;
1, 6, 12, 6, 1;
1, 12, 72, 72, 12, 1;
1, 20, 240, 720, 240, 20, 1;
1, 30, 600, 3600, 3600, 600, 30, 1;
...
Row 4 = (1, 6, 12, 6, 1) since ConvOffs transform of (1, 1, 2, 6) = (1, 6, 12, 6, 1); where A103505 = (1, 1, 2, 6, 12, 20, 30, 56, 72,...).
		

Crossrefs

Cf. A103505.

A279019 Least possible number of diagonals of simple convex polyhedron with n faces.

Original entry on oeis.org

0, 0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, 182, 210, 240, 272, 306, 342, 380, 420, 462, 506, 552, 600, 650, 702, 756, 812, 870, 930, 992, 1056, 1122, 1190, 1260, 1332, 1406, 1482, 1560, 1640, 1722, 1806, 1892, 1980, 2070, 2162, 2256, 2352, 2450
Offset: 4

Views

Author

Vladimir Letsko, Dec 03 2016

Keywords

Comments

Obviously, a pyramid has no diagonals. Hence minimum of diagonals of an arbitrary convex polyhedron having n faces is equal to 0.
Minimum number of diagonals among simple convex polyhedra having n faces is obtained from a polyhedron with two triangular faces, n-4 quadrangular faces and two (n-1)-sided faces. A polyhedron having 3 triangular faces, 3 pentagonal faces and 1 hexagonal face gives another example of a simple convex polyhedron with the least possible number of diagonals for n = 7. A polyhedron having 4 triangular faces and 4 hexagonal faces gives a similar example for n = 8.
Essentially the same as A103505 and A002378. - R. J. Mathar, Dec 05 2016

Crossrefs

Programs

  • Mathematica
    Table[(n-4)(n-5),{n,4,60}] (* or *) LinearRecurrence[{3,-3,1},{0,0,2},60] (* Harvey P. Dale, Sep 23 2019 *)
  • PARI
    concat(vector(2), Vec(2*x^6 / (1 - x)^3 + O(x^60))) \\ Colin Barker, Dec 05 2016

Formula

a(n) = n^2 - 9*n + 20 = (n-4)*(n-5).
G.f.: -2*x^6/(x-1)^3. - R. J. Mathar, Dec 05 2016
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>6. - Colin Barker, Dec 05 2016
E.g.f.: exp(x)*(20 - 8*x + x^2) - x^3/3 - 3*x^2 - 12*x - 20. - Stefano Spezia, Nov 24 2019
From Amiram Eldar, Jul 09 2023: (Start)
Sum_{n>=6} 1/a(n) = 1.
Sum_{n>=6} (-1)^n/a(n) = 2*log(2) - 1. (End)

A236532 Triangle T(n,k) read by rows: T(n,k) = floor(n*k/(n+k)), with 1 <= k <= n.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 2, 2, 0, 1, 2, 2, 2, 3, 0, 1, 2, 2, 2, 3, 3, 0, 1, 2, 2, 3, 3, 3, 4, 0, 1, 2, 2, 3, 3, 3, 4, 4, 0, 1, 2, 2, 3, 3, 4, 4, 4, 5, 0, 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 0, 1, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 0, 1, 2, 3, 3, 4, 4, 4, 5, 5
Offset: 1

Views

Author

Alex Ratushnyak, Jan 27 2014

Keywords

Comments

It appears that the least m such that T(m, n) = n-1 is given by A103505(n) for n>= 1. - Michel Marcus, Feb 25 2020

Examples

			Triangle begins:
  0
  0 1
  0 1 1
  0 1 1 2
  0 1 1 2 2
  0 1 2 2 2 3
  0 1 2 2 2 3 3
  0 1 2 2 3 3 3 4
  0 1 2 2 3 3 3 4 4
  0 1 2 2 3 3 4 4 4 5
  0 1 2 2 3 3 4 4 4 5 5
  0 1 2 3 3 4 4 4 5 5 5 6
  0 1 2 3 3 4 4 4 5 5 5 6 6
  0 1 2 3 3 4 4 5 5 5 6 6 6 7
  0 1 2 3 3 4 4 5 5 6 6 6 6 7 7
  0 1 2 3 3 4 4 5 5 6 6 6 7 7 7 8
  0 1 2 3 3 4 4 5 5 6 6 7 7 7 7 8 8
  0 1 2 3 3 4 5 5 6 6 6 7 7 7 8 8 8 9
		

Crossrefs

Programs

  • PARI
    T(n,k)={n*k\(n+k)} \\ Andrew Howroyd, Feb 24 2020
  • Python
    for n in range(1, 21):
      for k in range(1, n+1):
        print(n*k // (n+k), end=', ')
      #print() # Uncomment to display as a triangle
    

Formula

T(n, n) = floor(n/2). See A004526. - Michel Marcus, Feb 25 2020

A359365 a(n) = lcm([ n!*binomial(n-1, m-1) / m! for m = 1..n ]) with a(0) = 1.

Original entry on oeis.org

1, 1, 2, 6, 72, 240, 3600, 75600, 1411200, 10160640, 457228800, 4191264000, 184415616000, 2054916864000, 12466495641600, 1308982042368000, 314155690168320000, 14241724620963840000, 2178983867007467520000, 37260624125827694592000, 337119932567012474880000
Offset: 0

Views

Author

Peter Luschny, Dec 30 2022

Keywords

Comments

The lcm of the rows of the unsigned Lah triangle (for k >= 1).

Crossrefs

Cf. A271703 (unsigned Lah numbers), A103505 (gcd counterpart).

Programs

  • Maple
    # Maple has the convention integer lcm() = 1, which covers the case n = 0.
    a := n -> ilcm(seq(n!*binomial(n-1, m-1) / m!, m = 1..n)):
    seq(a(n), n = 0..20);
  • Mathematica
    {1}~Join~Table[LCM @@ Array[n!*Binomial[n - 1, # - 1]/#! &, n], {n, 20}] (* Michael De Vlieger, Dec 30 2022 *)
  • PARI
    a(n) = lcm(vector(n, m, n!*binomial(n-1, m-1) / m!)); \\ Michel Marcus, Dec 30 2022
  • Python
    from functools import cache
    from sympy import lcm
    def A359365 (n: int) -> int:
        @cache
        def l(n: int) -> list[int]:
            if n == 0: return [1]
            row: list[int] = l(n - 1) + [1]
            row[0] = 0
            for k in range(n - 1, 0, -1):
                row[k] = row[k] * (n + k - 1) + row[k - 1]
            return row
        return lcm(l(n)[1:])
    print([A359365(n) for n in range(21)])
    

A358185 Coefficients of x^n/n! in the expansion of (1 - x)*log(1 - x).

Original entry on oeis.org

0, -1, 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800, 87178291200, 1307674368000, 20922789888000, 355687428096000, 6402373705728000, 121645100408832000, 2432902008176640000, 51090942171709440000, 1124000727777607680000, 25852016738884976640000
Offset: 0

Views

Author

Wolfdieter Lang, Nov 14 2022

Keywords

Comments

The negated sequence gives the compositional inverse of 1 - exp(W(-x)) with the principal branch of Lambert's W function.
See A000312 for the two formulas of Vladimir Kruchinin, Sep 15 2010, and Peter Bala, Dec 09 2011. Here stated the other way around.

Crossrefs

Programs

  • Mathematica
    With[{m = 25}, Range[0, m]! * CoefficientList[Series[(1-x) * Log[1-x], {x, 0, m}], x]] (* Amiram Eldar, Nov 14 2022 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace((1-x)*log(1-x)), -N) \\ Michel Marcus, Sep 16 2023

Formula

E.g.f.: (1 - x) * log(1 - x).
a(0) = 0, a(1) = -1, a(n) = (n-2)! = A000142(n-2), for n >= 2.
Showing 1-5 of 5 results.