cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103532 Number of divisors of 240^n.

Original entry on oeis.org

1, 20, 81, 208, 425, 756, 1225, 1856, 2673, 3700, 4961, 6480, 8281, 10388, 12825, 15616, 18785, 22356, 26353, 30800, 35721, 41140, 47081, 53568, 60625, 68276, 76545, 85456, 95033, 105300, 116281, 128000, 140481, 153748, 167825, 182736
Offset: 0

Views

Author

J. Lowell, Aug 30 2008

Keywords

Comments

Geometric interpretation: Take a simple cubical grid of size (2n+1). Number the coordinates along each axis from 1 to (2n+1). Select only the cells that have at least two odd coordinates, and discard the rest. The number of selected cells is a(n). - Arun Giridhar, Mar 27 2015

Examples

			a(2) = 81 because 240^2 has 81 divisors.
a(2) = 81 because a 5 X 5 X 5 grid has 81 cells with at least two odd coordinates each, coordinate numbering starting at 1.
		

Crossrefs

Cf. similar sequences, with the formula (k*n-k+2)*n^2/2, listed in A262000.

Programs

  • Magma
    [(4*n+1)*(n+1)^2: n in [0..45]]; // Vincenzo Librandi, Feb 10 2016
  • Maple
    A103532 := proc(n) (4*n+1)*(n+1)^2 ; end proc: # R. J. Mathar, Aug 31 2008
  • Mathematica
    Table[(4 n + 1) (n + 1)^2, {n, 0, 40}] (* Stefan Steinerberger, Aug 31 2008 *)
    DivisorSigma[0,240^Range[0,40]] (* or *) LinearRecurrence[{4,-6,4,-1},{1,20,81,208},40] (* Harvey P. Dale, Jan 21 2013 *)

Formula

From R. J. Mathar and Stefan Steinerberger, Aug 31 2008: (Start)
a(n) = (4*n+1)*(n+1)^2.
G.f.: (1+16x+7x^2)/(1-x)^4.
Inverse binomial transform: 1, 19, 42, 24, 0 (0 continued). (End)
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>3. - Harvey P. Dale, Jan 21 2013
a(n) = (n+1)*A001107(n+1), where A001107 are the partial sums of A017007. - J. M. Bergot, Jul 08 2013
a(n) = Sum_{i=0..n} (n+1)*(8*i+1). [Bruno Berselli, Sep 08 2015]
Sum_{n>=0} 1/a(n) = 2*Pi/9 - Pi^2/18 + 4*log(2)/3 = 1.07401658592825... . - Vaclav Kotesovec, Oct 04 2016
E.g.f.: exp(x)*(1 + 19*x + 21*x^2 + 4*x^3). - Stefano Spezia, Jan 31 2025
Sum_{n>=0} (-1)^n/a(n) = 2*sqrt(2)*Pi/9 - Pi^2/36 - (4/9)*(log(2) + sqrt(2)*log(sqrt(2)-1)). - Amiram Eldar, Aug 15 2025

Extensions

More terms from Stefan Steinerberger and R. J. Mathar, Aug 31 2008
Example corrected by Harvey P. Dale, Jan 21 2013