cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103889 Odd and even positive integers swapped.

Original entry on oeis.org

2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15, 18, 17, 20, 19, 22, 21, 24, 23, 26, 25, 28, 27, 30, 29, 32, 31, 34, 33, 36, 35, 38, 37, 40, 39, 42, 41, 44, 43, 46, 45, 48, 47, 50, 49, 52, 51, 54, 53, 56, 55, 58, 57, 60, 59, 62, 61, 64, 63, 66, 65, 68, 67, 70, 69, 72, 71
Offset: 1

Views

Author

Zak Seidov, Feb 20 2005

Keywords

Comments

For n >= 5, also the number of (undirected) Hamiltonian cycles in the (n-2)-Moebius ladder. - Eric W. Weisstein, May 06 2019
For n >= 4, also the number of (undirected) Hamiltonian cycles in the (n-1)-prism graph. - Eric W. Weisstein, May 06 2019
The lexicographically first involution of the natural numbers with no fixed points. - Alexander Fraebel, Sep 08 2020

Crossrefs

Essentially the same as A014681.
Odd numbers: A005408. Even numbers: A005843.
Cf. A004442.

Programs

  • Haskell
    import Data.List (transpose)
    a103889 n = n - 1 + 2 * mod n 2
    a103889_list = concat $ transpose [tail a005843_list, a005408_list]
    -- Reinhard Zumkeller, Jun 23 2013, Feb 21 2011
    
  • Magma
    [n eq 1 select 2 else -Self(n-1)+2*n-1: n in [1..72]];
    
  • Mathematica
    Table[{n + 1, n}, {n, 1, 100, 2}] // Flatten
    Table[n - (-1)^n, {n, 25}] (* Eric W. Weisstein, May 06 2019 *)
  • PARI
    a(n)=n-1+if(n%2,2) \\ Charles R Greathouse IV, Feb 24 2011
    
  • Python
    def a(n): return n+1 if n&1 else n-1
    print([a(n) for n in range(1, 73)]) # Michael S. Branicky, May 03 2023

Formula

a(2k) = 2k-1 = A005408(k), a(2k-1) = 2k = A005843(k), k=1, 2, ...
O.g.f.: x*(x^2-x+2)/((x-1)^2*(1+x)). - R. J. Mathar, Apr 06 2008
a(n) = n-1+2*(n mod 2). - Rolf Pleisch, Apr 22 2008
a(n) = 2*n-a(n-1)-1 (with a(1)=2). - Vincenzo Librandi, Nov 16 2010
From Bruno Berselli, Nov 16 2010: (Start)
a(n) = n - (-1)^n.
a(n) - a(n-1) - a(n-2) + a(n-3) = 0 for n > 3.
(a(n) - 1)*(a(n-1) + 1) = 2*A176222(n+1) for n > 1.
(a(n) - 1)*(a(n-3) + 1) = 2*A176222(n) for n > 3. (End)
E.g.f.: 1 - exp(-x) + x*exp(x). - Stefano Spezia, May 03 2023