A103889 Odd and even positive integers swapped.
2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15, 18, 17, 20, 19, 22, 21, 24, 23, 26, 25, 28, 27, 30, 29, 32, 31, 34, 33, 36, 35, 38, 37, 40, 39, 42, 41, 44, 43, 46, 45, 48, 47, 50, 49, 52, 51, 54, 53, 56, 55, 58, 57, 60, 59, 62, 61, 64, 63, 66, 65, 68, 67, 70, 69, 72, 71
Offset: 1
Links
- Eric Gottlieb, Matjaž Krnc, and Peter Muršič, Nim on Integer Partitions and Hyperrectangles, arXiv:2506.04991 [math.CO], 2025. See p. 16.
- Eric Weisstein's World of Mathematics, Hamiltonian Cycle
- Eric Weisstein's World of Mathematics, Moebius Ladder
- Eric Weisstein's World of Mathematics, Prism Graph
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Crossrefs
Programs
-
Haskell
import Data.List (transpose) a103889 n = n - 1 + 2 * mod n 2 a103889_list = concat $ transpose [tail a005843_list, a005408_list] -- Reinhard Zumkeller, Jun 23 2013, Feb 21 2011
-
Magma
[n eq 1 select 2 else -Self(n-1)+2*n-1: n in [1..72]];
-
Mathematica
Table[{n + 1, n}, {n, 1, 100, 2}] // Flatten Table[n - (-1)^n, {n, 25}] (* Eric W. Weisstein, May 06 2019 *)
-
PARI
a(n)=n-1+if(n%2,2) \\ Charles R Greathouse IV, Feb 24 2011
-
Python
def a(n): return n+1 if n&1 else n-1 print([a(n) for n in range(1, 73)]) # Michael S. Branicky, May 03 2023
Formula
O.g.f.: x*(x^2-x+2)/((x-1)^2*(1+x)). - R. J. Mathar, Apr 06 2008
a(n) = n-1+2*(n mod 2). - Rolf Pleisch, Apr 22 2008
a(n) = 2*n-a(n-1)-1 (with a(1)=2). - Vincenzo Librandi, Nov 16 2010
From Bruno Berselli, Nov 16 2010: (Start)
a(n) = n - (-1)^n.
a(n) - a(n-1) - a(n-2) + a(n-3) = 0 for n > 3.
(a(n) - 1)*(a(n-1) + 1) = 2*A176222(n+1) for n > 1.
(a(n) - 1)*(a(n-3) + 1) = 2*A176222(n) for n > 3. (End)
E.g.f.: 1 - exp(-x) + x*exp(x). - Stefano Spezia, May 03 2023
Comments