cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A102820 Number of primes between 2*prime(n) and 2*prime(n+1), where prime(n) is the n-th prime.

Original entry on oeis.org

1, 1, 2, 2, 1, 2, 1, 2, 2, 2, 3, 1, 1, 1, 3, 3, 0, 2, 2, 0, 3, 1, 2, 4, 2, 0, 1, 0, 1, 6, 1, 3, 1, 3, 0, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 3, 2, 2, 0, 1, 1, 1, 1, 3, 6, 2, 0, 1, 6, 1, 3, 0, 1, 1, 3, 2, 2, 1, 2, 1, 1, 2, 4, 1, 3, 1, 1, 2, 1, 2, 1, 0, 1, 4, 2, 1, 3, 0, 2, 5, 0, 5, 3, 3, 2, 1, 0, 2
Offset: 1

Views

Author

Ali A. Tanara (tanara(AT)khayam.ut.ac.ir), Feb 27 2005

Keywords

Comments

Number of primes between successive even semiprimes. [Juri-Stepan Gerasimov, May 01 2010]
From Peter Munn, Jun 01 2023: (Start)
First differences of A020900.
A080192 lists prime(n) corresponding to the zero terms.
A104380(k) is prime(n) corresponding to the first occurrence of k as a term.
If a(n) is nonzero, A059786(n) is the smallest and A059788(n+1) the largest of the a(n) enumerated primes. In the tree of primes described in A290183, these primes label the child nodes of prime(n).
Conjecture: the asymptotic proportions of 0's, 1's, ... , k's, ... are 1/3, 2/9, ... , 2^k/3^(k+1), ... .
(End)

Examples

			a(15)=3 because there are 3 primes between the doubles of the 15th and 16th primes, that is between 2*47 and 2*53.
		

Crossrefs

Sequences with related analysis: A020900, A059786, A059788, A080192, A104380, A290183.
Cf. A104272, A080359. [Vladimir Shevelev, Aug 24 2009]
Sequences with similar definitions: A104289, A217564.

Programs

  • Haskell
    a102820 n = a102820_list !! (n-1)
    a102820_list =  map (sum . (map a010051)) $
       zipWith enumFromTo a100484_list (tail a100484_list)
    -- Reinhard Zumkeller, Apr 29 2012
    
  • Mathematica
    Table[PrimePi[2 Prime[n+1]]-PrimePi[2 Prime[n]], {n, 150}] (* Zak Seidov *)
    Differences[PrimePi[2 Prime[Range[110]]]] (* Harvey P. Dale, Oct 29 2022 *)
  • PARI
    a(n) = primepi(2*prime(n+1)) - primepi(2*prime(n)); \\ Michel Marcus, Sep 22 2017

Formula

a(n) = A020900(n+1) - A020900(n). - Peter Munn, Jun 01 2023

Extensions

More terms from Zak Seidov, Feb 28 2005

A215238 Prime(A215237).

Original entry on oeis.org

2, 3, 113, 1637, 2971, 44293, 305663, 1133071, 370261, 1357201, 46006769, 268119517, 291057379, 3429782117, 10502593103, 10926444583, 87241770619, 226751019497, 1901687257447
Offset: 0

Views

Author

T. D. Noe, Oct 11 2012

Keywords

Comments

We use offset 0 because A215237 uses that offset.
a(n) is least prime(k) such that there are exactly n primes between prime(k)/2 and prime(k+1)/2. - Peter Munn, Oct 22 2017

Crossrefs

Programs

  • Mathematica
    t = Table[PrimePi[Prime[n + 1]/2] - PrimePi[Prime[n]/2], {n, 100000}]; t2 = Flatten[Table[Position[t, n, 1, 1], {n, 0, 8}]]; Prime[t2]

Formula

a(n) = A000040(A215237(n)).

Extensions

a(14)-a(18) from Donovan Johnson, Oct 13 2012
Showing 1-2 of 2 results.