A102820 Number of primes between 2*prime(n) and 2*prime(n+1), where prime(n) is the n-th prime.
1, 1, 2, 2, 1, 2, 1, 2, 2, 2, 3, 1, 1, 1, 3, 3, 0, 2, 2, 0, 3, 1, 2, 4, 2, 0, 1, 0, 1, 6, 1, 3, 1, 3, 0, 3, 1, 1, 1, 3, 1, 3, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 3, 2, 2, 0, 1, 1, 1, 1, 3, 6, 2, 0, 1, 6, 1, 3, 0, 1, 1, 3, 2, 2, 1, 2, 1, 1, 2, 4, 1, 3, 1, 1, 2, 1, 2, 1, 0, 1, 4, 2, 1, 3, 0, 2, 5, 0, 5, 3, 3, 2, 1, 0, 2
Offset: 1
Examples
a(15)=3 because there are 3 primes between the doubles of the 15th and 16th primes, that is between 2*47 and 2*53.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- V. Shevelev, On critical small intervals containing primes, arXiv:0908.2319 [math.NT], 2009.
Crossrefs
Programs
-
Haskell
a102820 n = a102820_list !! (n-1) a102820_list = map (sum . (map a010051)) $ zipWith enumFromTo a100484_list (tail a100484_list) -- Reinhard Zumkeller, Apr 29 2012
-
Mathematica
Table[PrimePi[2 Prime[n+1]]-PrimePi[2 Prime[n]], {n, 150}] (* Zak Seidov *) Differences[PrimePi[2 Prime[Range[110]]]] (* Harvey P. Dale, Oct 29 2022 *)
-
PARI
a(n) = primepi(2*prime(n+1)) - primepi(2*prime(n)); \\ Michel Marcus, Sep 22 2017
Formula
Extensions
More terms from Zak Seidov, Feb 28 2005
Comments