cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A228275 A(n,k) = Sum_{i=1..k} n^i; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 6, 3, 0, 0, 4, 14, 12, 4, 0, 0, 5, 30, 39, 20, 5, 0, 0, 6, 62, 120, 84, 30, 6, 0, 0, 7, 126, 363, 340, 155, 42, 7, 0, 0, 8, 254, 1092, 1364, 780, 258, 56, 8, 0, 0, 9, 510, 3279, 5460, 3905, 1554, 399, 72, 9, 0
Offset: 0

Views

Author

Alois P. Heinz, Aug 19 2013

Keywords

Comments

A(n,k) is the total sum of lengths of longest ending contiguous subsequences with the same value over all s in {1,...,n}^k:
A(4,1) = 4 = 1+1+1+1: [1], [2], [3], [4].
A(1,4) = 4: [1,1,1,1].
A(3,2) = 12 = 2+1+1+1+2+1+1+1+2: [1,1], [1,2], [1,3], [2,1], [2,2], [2,3], [3,1], [3,2], [3,3].
A(2,3) = 14 = 3+1+1+2+2+1+1+3: [1,1,1], [1,1,2], [1,2,1], [1,2,2], [2,1,1], [2,1,2], [2,2,1], [2,2,2].

Examples

			Square array A(n,k) begins:
  0, 0,  0,   0,    0,     0,      0,      0, ...
  0, 1,  2,   3,    4,     5,      6,      7, ...
  0, 2,  6,  14,   30,    62,    126,    254, ...
  0, 3, 12,  39,  120,   363,   1092,   3279, ...
  0, 4, 20,  84,  340,  1364,   5460,  21844, ...
  0, 5, 30, 155,  780,  3905,  19530,  97655, ...
  0, 6, 42, 258, 1554,  9330,  55986, 335922, ...
  0, 7, 56, 399, 2800, 19607, 137256, 960799, ...
		

Crossrefs

Rows n=0-11 give: A000004, A001477, A000918(k+1), A029858(k+1), A080674, A104891, A105281, A104896, A052379(k-1), A052386, A105279, A105280.
Main diagonal gives A031972.
Lower diagonal gives A226238.
Cf. A228250.

Programs

  • Maple
    A:= (n, k)-> `if`(n=1, k, (n/(n-1))*(n^k-1)):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    a[0, 0] = 0; a[1, k_] := k; a[n_, k_] := n*(n^k-1)/(n-1); Table[a[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 16 2013 *)

Formula

A(1,k) = k, else A(n,k) = n/(n-1)*(n^k-1).
A(n,k) = Sum_{i=1..k} n^i.
A(n,k) = Sum_{i=1..k+1} binomial(k+1,i)*A(n-i,k)*(-1)^(i+1) for n>k, given values A(0,k), A(1,k),..., A(k,k). - Yosu Yurramendi, Sep 03 2013

A125682 a(n) = 3*(6^n - 1)/5.

Original entry on oeis.org

3, 21, 129, 777, 4665, 27993, 167961, 1007769, 6046617, 36279705, 217678233, 1306069401, 7836416409, 47018498457, 282110990745, 1692665944473, 10155995666841, 60935974001049, 365615844006297, 2193695064037785, 13162170384226713, 78973022305360281, 473838133832161689
Offset: 1

Views

Author

Zerinvary Lajos, Jan 31 2007

Keywords

Comments

The base-6 numbers 3_6, 33_6, 333_6, 3333_6, 33333_6, 333333_6, ... converted to base 10.
Also the total number of holes in a certain triangle fractal (start with 6 triangles, 3 holes) after n iterations. See illustration in Ngaokrajang link. - Jens Ahlström, Aug 29 2023

Examples

			Base 6        Base 10
3 ............. 3 = 3*6^0
33 ........... 21 = 3*6^1 + 3*6^0
333 ......... 129 = 3*6^2 + 3*6^1 + 3*6^0
3333 ........ 777 = 3*6^3 + 3*6^2 + 3*6^1 + 3*6^0, etc.
		

Crossrefs

Programs

  • Magma
    [(6^n-1)*3/5: n in [1..22]]; // Bruno Berselli, Apr 18 2012
  • Maple
    seq((6^n-1)*3/5, n=1..27);
  • Mathematica
    a[n_]:=(6^n-1)*3/5; Table[a[n],{n,1,22}] (* Robert P. P. McKone, Aug 29 2023 *)

Formula

G.f.: 3*x/((1-x)*(1-6*x)). - Bruno Berselli, Apr 18 2012
a(n) = 7*a(n-1) - 6*a(n-2). - Wesley Ivan Hurt, Dec 25 2021
From Elmo R. Oliveira, Mar 29 2025: (Start)
E.g.f.: 3*exp(x)*(exp(5*x) - 1)/5.
a(n) = 3*A003464(n). (End)

Extensions

Edited by N. J. A. Sloane, Feb 02 2007
Definition rewritten (with Lajos formula) from Bruno Berselli, Apr 18 2012

A247840 a(n) = Sum_{k=2..n} 6^k.

Original entry on oeis.org

0, 36, 252, 1548, 9324, 55980, 335916, 2015532, 12093228, 72559404, 435356460, 2612138796, 15672832812, 94036996908, 564221981484, 3385331888940, 20311991333676, 121871948002092, 731231688012588, 4387390128075564, 26324340768453420
Offset: 1

Views

Author

Vincenzo Librandi, Sep 25 2014

Keywords

Crossrefs

Cf. similar sequences listed in A247817.

Programs

  • Magma
    [0] cat [&+[6^k: k in [2..n]]: n in [2..30]];
    
  • Magma
    [(6^(n+1)-36)/5: n in [1..30]];
    
  • Mathematica
    RecurrenceTable[{a[1] == 0, a[n] == a[n-1] + 6^n}, a, {n, 30}] (* or *) CoefficientList[Series[36 x / ((1 - x) (1 - 6 x)), {x, 0, 30}], x]
    Join[{0},Accumulate[6^Range[2,30]]] (* or *) LinearRecurrence[{7,-6},{0,36},30] (* Harvey P. Dale, Jun 11 2016 *)
  • PARI
    a(n) = sum(k=2, n, 6^k); \\ Michel Marcus, Sep 25 2014

Formula

G.f.: 36*x^2/((1-x)*(1-6*x)).
a(n) = a(n-1) + 6^n = (6^(n+1) - 36)/5 = 7*a(n-1) - 6*a(n-2).
a(n) = A105281(n) - 6. - Michel Marcus, Sep 25 2014
a(n) = 36 * A003464(n-1). - Alois P. Heinz, Jan 14 2025
Showing 1-3 of 3 results.