cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A105755 Lucas 9-step numbers.

Original entry on oeis.org

1, 3, 7, 15, 31, 63, 127, 255, 511, 1013, 2025, 4047, 8087, 16159, 32287, 64511, 128895, 257535, 514559, 1028105, 2054185, 4104323, 8200559, 16384959, 32737631, 65410751, 130692607, 261127679, 521740799, 1042453493, 2082852801
Offset: 1

Views

Author

T. D. Noe, Apr 22 2005

Keywords

Crossrefs

Cf. A000032, A001644, A073817, A074048, A074584, A104621, A105754 (Lucas n-step numbers).

Programs

  • Mathematica
    a={-1, -1, -1, -1, -1, -1, -1, -1, 9}; Table[s=Plus@@a; a=RotateLeft[a]; a[[ -1]]=s, {n, 50}]
  • Maxima
    a(n):=n*sum(sum((-1)^i*binomial(k,k-i)*binomial(n-9*i-1,k-1),i,0,(n-k)/9)/k,k,1,n);
    makelist(a(n),n,1,17); /* Vladimir Kruchinin, Aug 10 2011 */
    
  • PARI
    a(n)=([0,1,0,0,0,0,0,0,0; 0,0,1,0,0,0,0,0,0; 0,0,0,1,0,0,0,0,0; 0,0,0,0,1,0,0,0,0; 0,0,0,0,0,1,0,0,0; 0,0,0,0,0,0,1,0,0; 0,0,0,0,0,0,0,1,0; 0,0,0,0,0,0,0,0,1; 1,1,1,1,1,1,1,1,1]^(n-1)*[1;3;7;15;31;63;127;255;511])[1,1] \\ Charles R Greathouse IV, Jun 15 2015

Formula

a(n) = Sum_{k=1..9} a(n-k) for n > 0, a(0)=9, a(n)=-1 for n=-8..-1
G.f.: -x*(1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 7*x^6 + 8*x^7 + 9*x^8) / ( -1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 ). - R. J. Mathar, Jun 20 2011
a(n) = n*Sum_{k=1..n} (Sum_{i=0..floor((n-k)/9)} (-1)^i*binomial(k, k-i)*binomial(n-9*i-1, k-1))/k. - Vladimir Kruchinin, Aug 10 2011

A106273 Discriminant of the polynomial x^n - x^(n-1) - ... - x - 1.

Original entry on oeis.org

1, 5, -44, -563, 9584, 205937, -5390272, -167398247, 6042477824, 249317139869, -11597205023744, -601139006326619, 34383289858207744, 2151954708695291177, -146323302326154543104, -10742330662077208945103, 846940331265064719417344, 71373256668946058057974997
Offset: 1

Views

Author

T. D. Noe, May 02 2005

Keywords

Comments

This polynomial is the characteristic polynomial of the Fibonacci and Lucas n-step sequences. These discriminants are prime for n=2, 4, 6, 26, 158 (A106274). It appears that the term a(2n+1) always has a factor of 2^(2n). With that factor removed, the discriminants are prime for odd n=3, 5, 7, 21, 99, 405. See A106275 for the combined list.
a(n) is the determinant of an r X r Hankel matrix whose entries are w(i+j) where w(n) = x1^n + x2^n + ... + xr^n where x1,x2,...xr are the roots of the titular characteristic polynomial. E.g., A000032 for n=2, A001644 for n=3, A073817 for n=4, A074048 for n=5, A074584 for n=6, A104621 for n=7, ... - Kai Wang, Jan 17 2021
Luca proves that a(n) is a term of the corresponding k-nacci sequence only for n=2 and 3. - Michel Marcus, Apr 12 2025

Crossrefs

Cf. A086797 (discriminant of the polynomial x^n-x-1), A000045, A000073, A000078, A001591, A001592 (Fibonacci n-step sequences), A000032, A001644, A073817, A074048, A074584, A104621, A105754, A105755 (Lucas n-step sequences), A086937, A106276, A106277, A106278 (number of distinct zeros of these polynomials for n=2, 3, 4, 5).

Programs

  • Mathematica
    Discriminant[p_?PolynomialQ, x_] := With[{n=Exponent[p, x]}, Cancel[((-1)^(n(n-1)/2) Resultant[p, D[p, x], x])/Coefficient[p, x, n]^(2n-1)]]; Table[Discriminant[x^n-Sum[x^i, {i, 0, n-1}], x], {n, 20}]
  • PARI
    {a(n)=(-1)^(n*(n+1)/2)*((n+1)^(n+1)-2*(2*n)^n)/(n-1)^2}  \\ Max Alekseyev, May 05 2005
    
  • PARI
    a(n)=poldisc('x^n-sum(k=0,n-1,'x^k)); \\ Joerg Arndt, May 04 2013

Formula

a(n) = (-1)^(n*(n+1)/2) * ((n+1)^(n+1)-2*(2*n)^n)/(n-1)^2. - Max Alekseyev, May 05 2005

A251672 8-step Fibonacci sequence starting with 0,0,0,0,0,0,1,0.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 1, 2, 4, 8, 16, 32, 64, 127, 254, 507, 1012, 2020, 4032, 8048, 16064, 32064, 64001, 127748, 254989, 508966, 1015912, 2027792, 4047536, 8079008, 16125952, 32187903, 64248058, 128241127, 255973288, 510930664, 1019833536, 2035619536
Offset: 0

Views

Author

Arie Bos, Dec 06 2014

Keywords

Comments

a(n+8) equals the number of n-length binary words avoiding runs of 0's of lengths 8i+7, (i=0,1,2,...). - Milan Janjic, Feb 26 2015

Crossrefs

Other 8-step Fibonacci sequences are A079262, A105754, A251740, A251741, A251742, A251744, A251745.

Programs

  • Mathematica
    LinearRecurrence[Table[1, {8}], {0, 0, 0, 0, 0, 0, 1, 0}, 43] (* Michael De Vlieger, Dec 09 2014 *)

Formula

a(n+8) = a(n) +a(n+1) +a(n+2) +a(n+3) +a(n+4) +a(n+5) +a(n+6) +a(n+7).
G.f.: x^6*(x-1)/(-1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8) . - R. J. Mathar, Mar 28 2025
a(n) = A079262(n+1)-A079262(n). - R. J. Mathar, Mar 28 2025

A125127 Array L(k,n) read by antidiagonals: k-step Lucas numbers.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 3, 4, 1, 1, 3, 7, 7, 1, 1, 3, 7, 11, 11, 1, 1, 3, 7, 15, 21, 18, 1, 1, 3, 7, 15, 26, 39, 29, 1, 1, 3, 7, 15, 31, 51, 71, 47, 1, 1, 3, 7, 15, 31, 57, 99, 131, 76, 1, 1, 3, 7, 15, 31, 63, 113, 191, 241, 123, 1
Offset: 1

Views

Author

Jonathan Vos Post, Nov 21 2006

Keywords

Examples

			Table begins:
1 | 1  1  1   1   1   1    1    1    1    1
2 | 1  3  4   7  11  18   29   47   76  123
3 | 1  3  7  11  21  39   71  131  241  443
4 | 1  3  7  15  26  51   99  191  367  708
5 | 1  3  7  15  31  57  113  223  439  863
6 | 1  3  7  15  31  63  120  239  475  943
7 | 1  3  7  15  31  63  127  247  493  983
8 | 1  3  7  15  31  63  127  255  502 1003
9 | 1  3  7  15  31  63  127  255  511 1013
		

Crossrefs

n-step Lucas number analog of A092921 Array F(k, n) read by antidiagonals: k-generalized Fibonacci numbers (and see related A048887, A048888). L(1, n) = "1-step Lucas numbers" = A000012. L(2, n) = 2-step Lucas numbers = A000204. L(3, n) = 3-step Lucas numbers = A001644. L(4, n) = 4-step Lucas numbers = A001648 Tetranacci numbers A073817 without the leading term 4. L(5, n) = 5-step Lucas numbers = A074048 Pentanacci numbers with initial conditions a(0)=5, a(1)=1, a(2)=3, a(3)=7, a(4)=15. L(6, n) = 6-step Lucas numbers = A074584 Esanacci ("6-anacci") numbers. L(7, n) = 7-step Lucas numbers = A104621 Heptanacci-Lucas numbers. L(8, n) = 8-step Lucas numbers = A105754. L(9, n) = 9-step Lucas numbers = A105755. See A000295, A125129 for comments on partial sums of diagonals.

Programs

  • Sage
    def L(k, n):
        if n < 0:
            return -1
        a = [-1]*(k-1) + [k] # [-1, -1, ..., -1, k]
        for i in range(1, n+1):
            a[:] = a[1:] + [sum(a)]
        return a[-1]
    [L(k, n) for d in (1..12) for k, n in zip((d..1, step=-1), (1..d))] # Freddy Barrera, Jan 10 2019

Formula

L(k,n) = L(k,n-1) + L(k,n-2) + ... + L(k,n-k); L(k,n) = -1 for n < 0, and L(k,0) = k.
G.f. for row k: x*(dB(k,x)/dx)/(1-B(k,x)), where B(k,x) = x + x^2 + ... + x^k. - Petros Hadjicostas, Jan 24 2019

Extensions

Corrected by Freddy Barrera, Jan 10 2019

A251740 8-step Fibonacci sequence starting with 0,0,0,0,0,1,0,0.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 4, 8, 16, 32, 63, 126, 252, 503, 1004, 2004, 4000, 7984, 15936, 31809, 63492, 126732, 252961, 504918, 1007832, 2011664, 4015344, 8014752, 15997695, 31931898, 63737064, 127221167, 253937416, 506867000, 1011722336, 2019429328
Offset: 0

Views

Author

Arie Bos, Dec 07 2014

Keywords

Crossrefs

Other 8-step Fibonacci sequences are A079262, A105754, A251672, A251741, A251742, A251744, A251745.

Programs

  • Mathematica
    LinearRecurrence[Table[1, {8}], {0, 0, 0, 0, 0, 1, 0, 0}, 43] (* Michael De Vlieger, Dec 08 2014 *)

Formula

a(n+8) = a(n)+a(n+1)+a(n+2)+a(n+3)+a(n+4)+a(n+5)+a(n+6)+a(n+7).
G.f.: x^5*(-1+x+x^2)/(-1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8) . - R. J. Mathar, Mar 28 2025
a(n) = A079262(n+2)-A079262(n+1)-A079262(n). - R. J. Mathar, Mar 28 2025

A251741 8-step Fibonacci sequence starting with 0,0,0,0,1,0,0,0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 1, 2, 4, 8, 16, 31, 62, 124, 248, 495, 988, 1972, 3936, 7856, 15681, 31300, 62476, 124704, 248913, 496838, 991704, 1979472, 3951088, 7886495, 15741690, 31420904, 62717104, 125185295, 249873752, 498755800, 995532128, 1987113168
Offset: 0

Views

Author

Arie Bos, Dec 07 2014

Keywords

Crossrefs

Other 8-step Fibonacci sequences are A079262, A105754, A251672, A251740, A251742, A251744, A251745.

Programs

  • Mathematica
    LinearRecurrence[Table[1, {8}], {0, 0, 0, 0, 1, 0, 0, 0}, 43] (* Michael De Vlieger, Dec 09 2014 *)

Formula

a(n+8) = a(n)+a(n+1)+a(n+2)+a(n+3)+a(n+4)+a(n+5)+a(n+6)+a(n+7).
G.f.: x^4*(-1+x+x^2+x^3)/(-1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8) . - R. J. Mathar, Mar 28 2025

A251742 8-step Fibonacci sequence starting with 0,0,0,1,0,0,0,0.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 0, 1, 2, 4, 8, 15, 30, 60, 120, 240, 479, 956, 1908, 3808, 7601, 15172, 30284, 60448, 120656, 240833, 480710, 959512, 1915216, 3822831, 7630490, 15230696, 30400944, 60681232, 121121631, 241762552, 482565592, 963215968, 1922609105
Offset: 0

Views

Author

Arie Bos, Dec 07 2014

Keywords

Crossrefs

Other 8-step Fibonacci sequences are A079262, A105754, A251672, A251740, A251741, A251744, A251745.

Programs

  • Mathematica
    LinearRecurrence[Table[1, {8}], {0, 0, 0, 1, 0, 0, 0, 0}, 43] (* Michael De Vlieger, Dec 09 2014 *)

Formula

a(n+8) = a(n)+a(n+1)+a(n+2)+a(n+3)+a(n+4)+a(n+5)+a(n+6)+a(n+7).
G.f.: x^3*(-1+x+x^2+x^3+x^4)/(-1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8) . - R. J. Mathar, Mar 28 2025
a(n) = A172318(n-3)-2*A172318(n-4)+A172318(n-8) . - R. J. Mathar, Mar 28 2025

A251744 8-step Fibonacci sequence starting with 0,0,1,0,0,0,0,0.

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 0, 0, 1, 2, 4, 7, 14, 28, 56, 112, 224, 447, 892, 1780, 3553, 7092, 14156, 28256, 56400, 112576, 224705, 448518, 895256, 1786959, 3566826, 7119496, 14210736, 28365072, 56617568, 113010431, 225572344, 450249432, 898711905, 1793856984
Offset: 0

Views

Author

Arie Bos, Dec 07 2014

Keywords

Crossrefs

Other 8-step Fibonacci sequences are A079262, A105754, A251672, A251740, A251741, A251742, A251745.

Programs

  • Mathematica
    LinearRecurrence[Table[1, {8}], {0, 0, 1, 0, 0, 0, 0, 0}, 43] (* Michael De Vlieger, Dec 09 2014 *)

Formula

a(n+8) = a(n)+a(n+1)+a(n+2)+a(n+3)+a(n+4)+a(n+5)+a(n+6)+a(n+7).
G.f.: x^2*(-1+x+x^2+x^3+x^4+x^5)/(-1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8) . - R. J. Mathar, Mar 28 2025

A251745 8-step Fibonacci sequence starting with 0,1,0,0,0,0,0,0.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 0, 0, 1, 2, 3, 6, 12, 24, 48, 96, 192, 383, 764, 1525, 3044, 6076, 12128, 24208, 48320, 96448, 192513, 384262, 766999, 1530954, 3055832, 6099536, 12174864, 24301408, 48506368, 96820223, 193256184, 385745369, 769959784, 1536863736, 3067627936
Offset: 0

Views

Author

Arie Bos, Dec 07 2014

Keywords

Crossrefs

Other 8-step Fibonacci sequences are A079262, A105754, A251672, A251740, A251741, A251742, A251744.

Programs

  • Mathematica
    LinearRecurrence[Table[1, {8}], {0, 1, 0, 0, 0, 0, 0, 0}, 43] (* Michael De Vlieger, Dec 09 2014 *)

Formula

a(n+8) = a(n)+a(n+1)+a(n+2)+a(n+3)+a(n+4)+a(n+5)+a(n+6)+a(n+7).
G.f.: x*(-1+x+x^2+x^3+x^4+x^5+x^6)/(-1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8) . - R. J. Mathar, Mar 28 2025

A127208 Union of all n-step Lucas sequences, that is, all sequences s(1-n) = s(2-n) = ... = s(-1) = -1, s(0) = n and for k > 0, s(k) = s(k-1) + ... + s(k-n).

Original entry on oeis.org

1, 3, 4, 7, 11, 15, 18, 21, 26, 29, 31, 39, 47, 51, 57, 63, 71, 76, 99, 113, 120, 123, 127, 131, 191, 199, 223, 239, 241, 247, 255, 322, 367, 439, 443, 475, 493, 502, 511, 521, 708, 815, 843, 863, 943, 983, 1003, 1013, 1023, 1364, 1365, 1499, 1695, 1871, 1959
Offset: 1

Views

Author

T. D. Noe, Jan 09 2007

Keywords

Comments

Noe and Post conjectured that the only positive terms that are common to any two distinct n-step Lucas sequences are the Mersenne numbers (A001348) that begin each sequence and 7 and 11 (in 2- and 3-step) and 5071 (in 3- and 4-step). The intersection of this sequence with the union of all the n-step Fibonacci sequences (A124168) appears to consist of 4, 21, 29, the Mersenne numbers 2^n-1 for all n and the infinite set of Eulerian numbers in A127232.

Crossrefs

Cf. A227885.

Programs

  • Mathematica
    LucasSequence[n_,kMax_] := Module[{a,s,lst={}}, a=Join[Table[ -1,{n-1}],{n}]; While[s=Plus@@a; a=RotateLeft[a]; a[[n]]=s; s<=kMax, AppendTo[lst,s]]; lst]; nn=10; t={}; Do[t=Union[t,LucasSequence[n,2^(nn+1)]], {n,2,nn}]; t

Formula

Showing 1-10 of 13 results. Next