A105770
Expansion of (x^2-x+1)*(4*x^2+x+1) / ((1+x+x^2)*(1-x)^3).
Original entry on oeis.org
1, 2, 7, 10, 17, 28, 37, 50, 67, 82, 101, 124, 145, 170, 199, 226, 257, 292, 325, 362, 403, 442, 485, 532, 577, 626, 679, 730, 785, 844, 901, 962, 1027, 1090, 1157, 1228, 1297, 1370, 1447, 1522, 1601, 1684, 1765, 1850, 1939, 2026, 2117, 2212, 2305, 2402, 2503
Offset: 0
-
LinearRecurrence[{2, -1, 1, -2, 1},{1, 2, 7, 10, 17},51] (* Ray Chandler, Sep 23 2015 *)
-
Vec((1 - x + x^2)*(1 + x + 4*x^2) / ((1 - x)^3*(1 + x + x^2)) + O(x^60)) \\ Colin Barker, May 19 2019
A111250
Numbers n such that 7*n + 10 is prime.
Original entry on oeis.org
1, 3, 7, 9, 13, 21, 27, 31, 33, 37, 39, 43, 49, 51, 57, 67, 73, 79, 81, 87, 91, 93, 109, 111, 117, 121, 133, 139, 141, 147, 157, 159, 163, 169, 177, 181, 183, 187, 193, 207, 211, 219, 223, 229, 231, 237, 241, 249, 259, 267, 271, 277, 297, 303, 319, 333, 339, 343
Offset: 1
If n=117 then 7*n + 10 = 829 (prime).
-
[ n: n in [0..1500] | IsPrime(7*n + 10) ] // Vincenzo Librandi, Jan 31 2011
-
Select[Range[400],PrimeQ[7#+10]&] (* Harvey P. Dale, Mar 25 2021 *)
-
for(n=1,453,if(isprime(7*n + 10),print1(n,",")))
Extended by Lambert Klasen (lambert.klasen(AT)gmx.net), Nov 02 2005
A153351
Numbers n such that 7*n+2 is not prime.
Original entry on oeis.org
1, 2, 4, 6, 7, 8, 9, 10, 12, 13, 14, 16, 17, 18, 19, 20, 22, 24, 25, 26, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 48, 49, 50, 52, 54, 55, 56, 58, 59, 60, 61, 62, 64, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 89, 90
Offset: 1
Distribution of the odd terms in the following triangular array:
1;
*,*;
*,*,*;
*,*,*,*;
*,*,*,*,17;
*,9,*,*,*,*;
*,*,*,19,*,*,*;
7,*,*,*,*,*,*,41;
*,*,*,*,*,35,*,*,*;
*,*,*,*,*,*,*,*,*,*;
*,*,*,*,*,*,49,*,*,*,*;
*,*,*,*,39,*,*,*,*,*,*,89;
*,19,*,*,*,*,*,*,73,*,*,*,*; etc.
where * marks the non-integer values of (4*h*k + 2*k + 2*h - 1)/7 with h >= k >= 1. - _Vincenzo Librandi_, Jan 17 2013
A023223
Primes p such that 7*p + 2 is also prime.
Original entry on oeis.org
3, 5, 11, 23, 47, 53, 71, 101, 107, 131, 167, 173, 197, 251, 257, 293, 311, 317, 353, 383, 431, 461, 467, 563, 587, 593, 683, 701, 773, 797, 821, 827, 863, 887, 911, 953, 977, 983, 1031, 1091, 1097, 1103, 1151, 1181, 1187, 1193, 1217, 1223, 1277, 1301, 1307, 1373
Offset: 1
3 is in the sequence because 7 * 3 + 2 = 23, which is prime.
5 is in the sequence because 7 * 5 + 2 = 37, which is prime.
7 is not in the sequence because 7 * 7 + 2 = 51 = 3 * 17.
-
[n: n in [0..100000] | IsPrime(n) and IsPrime(7*n+2)]; // Vincenzo Librandi, Nov 19 2010
-
Select[Prime[Range[250]], PrimeQ[7# + 2] &] (* Alonso del Arte, Apr 08 2015 *)
-
lista(nn) = forprime(p=2, nn, if(isprime(7*p+2), print1(p, ", "))); \\ Altug Alkan, Jul 08 2016
A106086
Primes p such that 7*p + 2 and 2*p + 7 are primes.
Original entry on oeis.org
3, 5, 11, 23, 47, 53, 71, 131, 173, 197, 251, 257, 293, 317, 383, 461, 467, 587, 593, 683, 701, 773, 797, 863, 953, 983, 1031, 1103, 1151, 1187, 1193, 1217, 1301, 1307, 1373, 1451, 1481, 1607, 1721, 1787, 2111, 2207, 2237, 2333, 2633, 2903, 3023, 3221, 3347
Offset: 1
-
[p: p in PrimesUpTo(5000)|IsPrime(7*p+2) and IsPrime(2*p+7)] // Vincenzo Librandi, Jan 30 2011
-
Select[Prime[Range[220]], PrimeQ[2#+7]&&PrimeQ[7#+2]&]
A107438
Primes p such that 7*p+2 or 2*p+7 is prime.
Original entry on oeis.org
2, 3, 5, 11, 17, 23, 41, 47, 53, 71, 83, 101, 107, 113, 131, 137, 167, 173, 191, 197, 227, 251, 257, 281, 293, 311, 317, 347, 353, 383, 401, 431, 461, 467, 503, 521, 563, 587, 593, 641, 647, 677, 683, 701, 743, 773, 797, 821, 827, 857, 863, 887, 911, 941, 947
Offset: 1
Cf.
A105760 Numbers n such that (2*n + 7) is prime;
A105772 Numbers n such that (7*n + 2) is prime.
-
Select[Prime[Range[220]], PrimeQ[2#+7]||PrimeQ[7#+2]&] (* Shepherd *)
-
isok(n) = isprime(n) && (isprime(7*n+2) || isprime(2*n+7)); \\ Michel Marcus, Oct 06 2013
A111249
Numbers n such that 7*n + 8 is prime.
Original entry on oeis.org
3, 5, 9, 15, 17, 27, 29, 33, 39, 47, 53, 59, 63, 65, 69, 77, 87, 89, 93, 95, 99, 105, 107, 117, 125, 129, 135, 137, 143, 149, 155, 165, 183, 185, 195, 203, 209, 213, 225, 227, 237, 243, 245, 267, 275, 285, 287, 297, 303, 305, 315, 323, 327, 329, 333, 339, 345
Offset: 1
If n=125 then 7*n + 8 = 883 (prime).
-
[n: n in [0..100000] | IsPrime(7*n+8)] // Vincenzo Librandi, Nov 13 2010
-
A111249:=n->`if`(isprime(7*n+8), n, NULL): seq(A111249(n), n=1..10^3); # Wesley Ivan Hurt, Feb 13 2017
-
Select[Range[1,351,2], PrimeQ[7#+8]&] (* Harvey P. Dale, Sep 11 2016 *)
-
is(n)=isprime(7*n+8) \\ Charles R Greathouse IV, Feb 14 2017
A359695
Numbers k such that 29^k - 2 is prime.
Original entry on oeis.org
2, 4, 8, 14, 42, 420, 1344
Offset: 1
4 is a term because 29^4 - 2 = 707279 is a prime number.
-
Select[Range[1400], PrimeQ[29^# - 2] &] (* Amiram Eldar, Mar 10 2023 *)
-
is(k) = isprime(29^k - 2);
Showing 1-8 of 8 results.
Comments