cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A105770 Expansion of (x^2-x+1)*(4*x^2+x+1) / ((1+x+x^2)*(1-x)^3).

Original entry on oeis.org

1, 2, 7, 10, 17, 28, 37, 50, 67, 82, 101, 124, 145, 170, 199, 226, 257, 292, 325, 362, 403, 442, 485, 532, 577, 626, 679, 730, 785, 844, 901, 962, 1027, 1090, 1157, 1228, 1297, 1370, 1447, 1522, 1601, 1684, 1765, 1850, 1939, 2026, 2117, 2212, 2305, 2402, 2503
Offset: 0

Views

Author

Creighton Dement, Apr 18 2005

Keywords

Comments

This sequence is "tesrokseq" at the link "Sequences in Context". The identity vesrok = jesrok + lesrok + tesrok holds.
Floretion Algebra Multiplication Program, FAMP Code: 4tesrokseq[ - .25'i + 1.25'j - .25'k - .25i' + 1.25j' - .25k' + 1.25'ii' + .25'jj' - .75'kk' + .75'ij' + .25'ik' + .75'ji' - .25'jk' + .25'ki' - .25'kj' + .25e] (Link to Sequences in Context contains further details on the "roktype" used).
Differs from A002522 (n^2+1) by two every third number.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, -1, 1, -2, 1},{1, 2, 7, 10, 17},51] (* Ray Chandler, Sep 23 2015 *)
  • PARI
    Vec((1 - x + x^2)*(1 + x + 4*x^2) / ((1 - x)^3*(1 + x + x^2)) + O(x^60)) \\ Colin Barker, May 19 2019

Formula

a(n) = n^2 + 1 + [0,0,2] (3-periodic). - Ralf Stephan, Nov 15 2010.
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n>4. - Colin Barker, May 19 2019
3*a(n) = 3*n^2 +5 -2*A061347(n). - R. J. Mathar, Oct 25 2022

A111250 Numbers n such that 7*n + 10 is prime.

Original entry on oeis.org

1, 3, 7, 9, 13, 21, 27, 31, 33, 37, 39, 43, 49, 51, 57, 67, 73, 79, 81, 87, 91, 93, 109, 111, 117, 121, 133, 139, 141, 147, 157, 159, 163, 169, 177, 181, 183, 187, 193, 207, 211, 219, 223, 229, 231, 237, 241, 249, 259, 267, 271, 277, 297, 303, 319, 333, 339, 343
Offset: 1

Views

Author

Parthasarathy Nambi, Oct 31 2005

Keywords

Comments

One less than the entry of A089033 at the same index.

Examples

			If n=117 then 7*n + 10 = 829 (prime).
		

Crossrefs

Programs

  • Magma
    [ n: n in [0..1500] | IsPrime(7*n + 10) ] // Vincenzo Librandi, Jan 31 2011
  • Mathematica
    Select[Range[400],PrimeQ[7#+10]&] (* Harvey P. Dale, Mar 25 2021 *)
  • PARI
    for(n=1,453,if(isprime(7*n + 10),print1(n,",")))
    

Extensions

Extended by Lambert Klasen (lambert.klasen(AT)gmx.net), Nov 02 2005

A153351 Numbers n such that 7*n+2 is not prime.

Original entry on oeis.org

1, 2, 4, 6, 7, 8, 9, 10, 12, 13, 14, 16, 17, 18, 19, 20, 22, 24, 25, 26, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 48, 49, 50, 52, 54, 55, 56, 58, 59, 60, 61, 62, 64, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 89, 90
Offset: 1

Views

Author

Vincenzo Librandi, Dec 24 2008

Keywords

Examples

			Distribution of the odd terms in the following triangular array:
1;
*,*;
*,*,*;
*,*,*,*;
*,*,*,*,17;
*,9,*,*,*,*;
*,*,*,19,*,*,*;
7,*,*,*,*,*,*,41;
*,*,*,*,*,35,*,*,*;
*,*,*,*,*,*,*,*,*,*;
*,*,*,*,*,*,49,*,*,*,*;
*,*,*,*,39,*,*,*,*,*,*,89;
*,19,*,*,*,*,*,*,73,*,*,*,*; etc.
where * marks the non-integer values of (4*h*k + 2*k + 2*h - 1)/7 with h >= k >= 1. - _Vincenzo Librandi_, Jan 17 2013
		

Crossrefs

Cf. A105772.

Programs

  • Magma
    [n: n in [0..150] | not IsPrime(7*n + 2)]; // Vincenzo Librandi, Jan 13 2013
  • Mathematica
    Select[Range[200], !PrimeQ[7 # + 2] &] (* Vincenzo Librandi, Jan 13 2013 *)

Extensions

Erroneous comment deleted by N. J. A. Sloane, Jun 23 2010

A023223 Primes p such that 7*p + 2 is also prime.

Original entry on oeis.org

3, 5, 11, 23, 47, 53, 71, 101, 107, 131, 167, 173, 197, 251, 257, 293, 311, 317, 353, 383, 431, 461, 467, 563, 587, 593, 683, 701, 773, 797, 821, 827, 863, 887, 911, 953, 977, 983, 1031, 1091, 1097, 1103, 1151, 1181, 1187, 1193, 1217, 1223, 1277, 1301, 1307, 1373
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A105772. Except for the first term all others are congruent to 5 (mod 6) because 7*(6n+1)+2 is divisible by 3. - John Cerkan, Jul 08 2016

Examples

			3 is in the sequence because 7 * 3 + 2 = 23, which is prime.
5 is in the sequence because 7 * 5 + 2 = 37, which is prime.
7 is not in the sequence because 7 * 7 + 2 = 51 = 3 * 17.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..100000] | IsPrime(n) and IsPrime(7*n+2)]; // Vincenzo Librandi, Nov 19 2010
    
  • Mathematica
    Select[Prime[Range[250]], PrimeQ[7# + 2] &] (* Alonso del Arte, Apr 08 2015 *)
  • PARI
    lista(nn) = forprime(p=2, nn, if(isprime(7*p+2), print1(p, ", "))); \\ Altug Alkan, Jul 08 2016

A106086 Primes p such that 7*p + 2 and 2*p + 7 are primes.

Original entry on oeis.org

3, 5, 11, 23, 47, 53, 71, 131, 173, 197, 251, 257, 293, 317, 383, 461, 467, 587, 593, 683, 701, 773, 797, 863, 953, 983, 1031, 1103, 1151, 1187, 1193, 1217, 1301, 1307, 1373, 1451, 1481, 1607, 1721, 1787, 2111, 2207, 2237, 2333, 2633, 2903, 3023, 3221, 3347
Offset: 1

Views

Author

Zak Seidov, May 07 2005

Keywords

Crossrefs

Cf. A105760 (2n+7 is prime), A105772 (7n+2 is prime).

Programs

  • Magma
    [p: p in PrimesUpTo(5000)|IsPrime(7*p+2) and IsPrime(2*p+7)] // Vincenzo Librandi, Jan 30 2011
  • Mathematica
    Select[Prime[Range[220]], PrimeQ[2#+7]&&PrimeQ[7#+2]&]

Extensions

More terms from Rick L. Shepherd, Jan 29 2006

A107438 Primes p such that 7*p+2 or 2*p+7 is prime.

Original entry on oeis.org

2, 3, 5, 11, 17, 23, 41, 47, 53, 71, 83, 101, 107, 113, 131, 137, 167, 173, 191, 197, 227, 251, 257, 281, 293, 311, 317, 347, 353, 383, 401, 431, 461, 467, 503, 521, 563, 587, 593, 641, 647, 677, 683, 701, 743, 773, 797, 821, 827, 857, 863, 887, 911, 941, 947
Offset: 1

Views

Author

Zak Seidov, May 26 2005

Keywords

Crossrefs

Cf. A105760 Numbers n such that (2*n + 7) is prime; A105772 Numbers n such that (7*n + 2) is prime.

Programs

  • Mathematica
    Select[Prime[Range[220]], PrimeQ[2#+7]||PrimeQ[7#+2]&] (* Shepherd *)
  • PARI
    isok(n) = isprime(n) && (isprime(7*n+2) || isprime(2*n+7)); \\ Michel Marcus, Oct 06 2013

Extensions

Edited by Rick L. Shepherd, Feb 01 2006

A111249 Numbers n such that 7*n + 8 is prime.

Original entry on oeis.org

3, 5, 9, 15, 17, 27, 29, 33, 39, 47, 53, 59, 63, 65, 69, 77, 87, 89, 93, 95, 99, 105, 107, 117, 125, 129, 135, 137, 143, 149, 155, 165, 183, 185, 195, 203, 209, 213, 225, 227, 237, 243, 245, 267, 275, 285, 287, 297, 303, 305, 315, 323, 327, 329, 333, 339, 345
Offset: 1

Views

Author

Parthasarathy Nambi, Oct 31 2005

Keywords

Comments

One less than the associated entry in A024905.

Examples

			If n=125 then 7*n + 8 = 883 (prime).
		

Crossrefs

Programs

A359695 Numbers k such that 29^k - 2 is prime.

Original entry on oeis.org

2, 4, 8, 14, 42, 420, 1344
Offset: 1

Views

Author

Arsen Vardanyan, Mar 07 2023

Keywords

Comments

a(8) > 10^4, if it exists. - Amiram Eldar, Mar 10 2023
All terms in this sequence are even. - Yifan Xie, Mar 12 2023
a(8) > 5*10^4, if it exists. - Michael S. Branicky, Sep 14 2024

Examples

			4 is a term because 29^4 - 2 = 707279 is a prime number.
		

Crossrefs

Cf. A087886 (29^k + 2 is prime).
Cf. A128460, A128459, A128457, A109076, A090669, A105772, A109080, (and similar others).

Programs

  • Mathematica
    Select[Range[1400], PrimeQ[29^# - 2] &] (* Amiram Eldar, Mar 10 2023 *)
  • PARI
    is(k) = isprime(29^k - 2);
Showing 1-8 of 8 results.