cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A076139 Triangular numbers that are one-third of another triangular number: T(m) such that 3*T(m) = T(k) for some k.

Original entry on oeis.org

0, 1, 15, 210, 2926, 40755, 567645, 7906276, 110120220, 1533776805, 21362755051, 297544793910, 4144264359690, 57722156241751, 803965923024825, 11197800766105800, 155965244802456376, 2172315626468283465, 30256453525753512135, 421418033734080886426
Offset: 0

Views

Author

Bruce Corrigan (scentman(AT)myfamily.com), Oct 31 2002

Keywords

Comments

Both triangular and generalized pentagonal numbers: intersection of A000217 and A001318. - Vladeta Jovovic, Aug 29 2004
Partial sums of Chebyshev polynomials S(n,14).

Examples

			G.f. = x + 15*x^2 + 210*x^3 + 2926*x^4 + 40755*x^5 + 567645*x^6 + ...
a(3)=210=T(20) and 3*210=630=T(35).
		

Crossrefs

The m values are in A061278, the k values are in A001571.
Cf. A212336 for more sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3).

Programs

  • Magma
    [(Evaluate(ChebyshevU(n+1), 7) - Evaluate(ChebyshevU(n), 7) - 1)/12 : n in [0..30]]; // G. C. Greubel, Feb 03 2022
  • Mathematica
    a[n_] := a[n] = 14*a[n-1] - a[n-2] + 1; a[0] = 0; a[1] = 1; Table[ a[n], {n, 0, 17}] (* Jean-François Alcover, Dec 15 2011, after given formula *)
  • PARI
    {a(n) = polchebyshev( n, 2, 7) / 14 + polchebyshev( n, 1, 7)/ 84 - 1 / 12}; /* Michael Somos, Jun 16 2011 */
    
  • PARI
    concat(0, Vec(-x/((x-1)*(x^2-14*x+1)) + O(x^100))) \\ Colin Barker, May 15 2015
    
  • Sage
    [(chebyshev_U(n,7) - chebyshev_U(n-1,7) - 1)/12 for n in (0..30)] # G. C. Greubel, Feb 03 2022
    

Formula

G.f.: x / ((1 - x) * (1 - 14*x +x^2)).
a(n+1) = Sum_{k=0..n} S(k, 14), n >= 0, where S(k, 14) = U(k, 7) = A007655(k+2).
a(n+1) = (S(n+1, 14) - S(n, 14) - 1)/12, n >= 0.
a(n) = 14 * a(n-1) - a(n-2) + 1. a(0)=0, a(1)=1.
a(-n) = a(n-1).
a(n) = A061278(n)*(A061278(n)+1)/2.
a(n) = (1/288)*(-24 + (12-6*sqrt(3))*(7-4*sqrt(3))^n + (12+6*sqrt(3))*(7+4*sqrt(3))^n).
a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3) with a(0)=0, a(1)=1, a(2)=15. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002
a(2*n) = A108281(n + 1). a(2*n + 1) = A014979(n + 2). - Michael Somos, Jun 16 2011
a(n) = (1/2)*A217855(n) = (1/3)*A076140(n) = (1/4)*A123480(n) = (1/8)*A045899(n). - Peter Bala, Dec 31 2012
a(n) = A001353(n) * A001353(n-1) / 4. - Richard R. Forberg, Aug 26 2013
a(n) = ((2+sqrt(3))^(2*n+1) + (2-sqrt(3))^(2*n+1))/48 - 1/12. - Vladimir Pletser, Jan 15 2021

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002
Chebyshev comments from Wolfdieter Lang, Aug 31 2004

A014979 Numbers that are both triangular and pentagonal.

Original entry on oeis.org

0, 1, 210, 40755, 7906276, 1533776805, 297544793910, 57722156241751, 11197800766105800, 2172315626468283465, 421418033734080886426, 81752926228785223683195, 15859646270350599313653420
Offset: 1

Views

Author

Glenn Johnston (glennj(AT)sonic.net)

Keywords

Examples

			G.f. = x^2 + 210*x^3 + 40755*x^4 + 7906276*x^5 + 1533776805*x^6 + ...
a(4) = 40755 which is 285*(285-1)/2 = 165*(3*165-1)/2.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 210, p. 61, Ellipses, Paris 2008.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 22.

Crossrefs

Programs

  • Mathematica
    a[ n_] := ChebyshevU[ 2 n - 3, 7] / 14 + ChebyshevT[ 2 n - 3, 7] / 84 - 1/12; (* Michael Somos, Feb 24 2015 *)
    LinearRecurrence[{195,-195,1},{0,1,210},20] (* Harvey P. Dale, May 19 2017 *)
  • PARI
    {a(n) = polchebyshev( 2*n - 3, 2, 7) / 14 + polchebyshev( 2*n - 3, 1, 7) / 84 - 1 / 12}; /* Michael Somos, Jun 16 2011 */

Formula

a(n) = 194 * a(n-1) - a(n-2) + 16.
G.f.: x^2 * (1 + 15*x) / ((1 - x) * (1 - 194*x + x^2)).
a(n)=((((1+sqrt(3))^(4*n-1)-(1-sqrt(3))^(4*n-1))/(2^(2*n+1)*sqrt(3)))^2)/2-1/8. - John Sillcox (johnsillcox(AT)hotmail.com), Sep 01 2003
a(n+1) = 97*a(n)+8+7*(192*a(n)^2+32*a(n)+1)^(1/2) - Richard Choulet, Sep 19 2007
a(n) = A076139(2*n - 3) = A108281(2 - n). for all n in Z. - Michael Somos, Jun 16 2011

Extensions

Corrected and extended by Warut Roonguthai
Edited by N. J. A. Sloane, Jul 24 2006

A225839 Triangular numbers representable as triangular(m) + triangular(2m).

Original entry on oeis.org

0, 378, 17766, 39209940, 1842032556, 4065365016846, 190985619471570, 421505175637435176, 19801770996209306328, 43702499616375188919330, 2053087220237987679246270, 4531162564803507161896556028, 212868189148913267563402477956, 469799997000254729943383533193910
Offset: 1

Views

Author

Alex Ratushnyak, May 17 2013

Keywords

Comments

Triangular numbers of the sequence A147875: a(n) = A147875(A225785(n)) - see also Ralf Stephan in Program lines. [Bruno Berselli, May 20 2013]

Crossrefs

Cf. A108281 (triangular numbers representable as triangular(m) + m^2).
Cf. A225785 (numbers n such that triangular(n) + triangular(2n) is a triangular number).

Programs

  • Mathematica
    CoefficientList[Series[378 x (1 + 46 x + x^2)/((1 - x) (1 - 322 x + x^2) (1 + 322 x + x^2)), {x, 0, 20}], x] (* Bruno Berselli, May 20 2013 *)
    LinearRecurrence[{1,103682,-103682,-1,1},{0,378,17766,39209940,1842032556},20] (* Harvey P. Dale, Jan 16 2019 *)
  • PARI
    for(n=1,10^9,t=n*(5*n+3)/2;x=sqrtint(2*t);if(t==x*(x+1)/2,print(t))) \\ Ralf Stephan, May 17 2013

Formula

G.f.: 378*x*(1+46*x+x^2)/((1-x)*(1-322*x+x^2)*(1+322*x+x^2)). [Bruno Berselli, May 20 2013]

Extensions

More terms from Bruno Berselli, May 20 2013
Showing 1-3 of 3 results.