cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A076139 Triangular numbers that are one-third of another triangular number: T(m) such that 3*T(m) = T(k) for some k.

Original entry on oeis.org

0, 1, 15, 210, 2926, 40755, 567645, 7906276, 110120220, 1533776805, 21362755051, 297544793910, 4144264359690, 57722156241751, 803965923024825, 11197800766105800, 155965244802456376, 2172315626468283465, 30256453525753512135, 421418033734080886426
Offset: 0

Views

Author

Bruce Corrigan (scentman(AT)myfamily.com), Oct 31 2002

Keywords

Comments

Both triangular and generalized pentagonal numbers: intersection of A000217 and A001318. - Vladeta Jovovic, Aug 29 2004
Partial sums of Chebyshev polynomials S(n,14).

Examples

			G.f. = x + 15*x^2 + 210*x^3 + 2926*x^4 + 40755*x^5 + 567645*x^6 + ...
a(3)=210=T(20) and 3*210=630=T(35).
		

Crossrefs

The m values are in A061278, the k values are in A001571.
Cf. A212336 for more sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3).

Programs

  • Magma
    [(Evaluate(ChebyshevU(n+1), 7) - Evaluate(ChebyshevU(n), 7) - 1)/12 : n in [0..30]]; // G. C. Greubel, Feb 03 2022
  • Mathematica
    a[n_] := a[n] = 14*a[n-1] - a[n-2] + 1; a[0] = 0; a[1] = 1; Table[ a[n], {n, 0, 17}] (* Jean-François Alcover, Dec 15 2011, after given formula *)
  • PARI
    {a(n) = polchebyshev( n, 2, 7) / 14 + polchebyshev( n, 1, 7)/ 84 - 1 / 12}; /* Michael Somos, Jun 16 2011 */
    
  • PARI
    concat(0, Vec(-x/((x-1)*(x^2-14*x+1)) + O(x^100))) \\ Colin Barker, May 15 2015
    
  • Sage
    [(chebyshev_U(n,7) - chebyshev_U(n-1,7) - 1)/12 for n in (0..30)] # G. C. Greubel, Feb 03 2022
    

Formula

G.f.: x / ((1 - x) * (1 - 14*x +x^2)).
a(n+1) = Sum_{k=0..n} S(k, 14), n >= 0, where S(k, 14) = U(k, 7) = A007655(k+2).
a(n+1) = (S(n+1, 14) - S(n, 14) - 1)/12, n >= 0.
a(n) = 14 * a(n-1) - a(n-2) + 1. a(0)=0, a(1)=1.
a(-n) = a(n-1).
a(n) = A061278(n)*(A061278(n)+1)/2.
a(n) = (1/288)*(-24 + (12-6*sqrt(3))*(7-4*sqrt(3))^n + (12+6*sqrt(3))*(7+4*sqrt(3))^n).
a(n) = 15*a(n-1) - 15*a(n-2) + a(n-3) with a(0)=0, a(1)=1, a(2)=15. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002
a(2*n) = A108281(n + 1). a(2*n + 1) = A014979(n + 2). - Michael Somos, Jun 16 2011
a(n) = (1/2)*A217855(n) = (1/3)*A076140(n) = (1/4)*A123480(n) = (1/8)*A045899(n). - Peter Bala, Dec 31 2012
a(n) = A001353(n) * A001353(n-1) / 4. - Richard R. Forberg, Aug 26 2013
a(n) = ((2+sqrt(3))^(2*n+1) + (2-sqrt(3))^(2*n+1))/48 - 1/12. - Vladimir Pletser, Jan 15 2021

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002
Chebyshev comments from Wolfdieter Lang, Aug 31 2004

A046174 Indices of pentagonal numbers which are also triangular.

Original entry on oeis.org

0, 1, 12, 165, 2296, 31977, 445380, 6203341, 86401392, 1203416145, 16761424636, 233456528757, 3251629977960, 45289363162681, 630799454299572, 8785902997031325, 122371842504138976, 1704419892060914337
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [ n eq 1 select 0 else n eq 2 select 1 else 14*Self(n-1)-Self(n-2)-2: n in [1..20] ]; // Vincenzo Librandi, Aug 23 2011
  • Mathematica
    LinearRecurrence[{15,-15,1},{0,1,12},20] (* Harvey P. Dale, Aug 22 2011 *)

Formula

From Warut Roonguthai, Jan 05 2001: (Start)
a(n) = 14*a(n-1) - a(n-2) - 2.
G.f.: x*(1-3*x)/((1-x)*(1-14*x+x^2)). (End)
a(n+1) = 7*a(n) - 1 + 2*sqrt(12*a(n)^2 - 4*a(n) + 1). - Richard Choulet, Sep 19 2007
a(n+1) = 15*a(n) - 15*a(n-1) + a(n-2), a(1)=1, a(2)=12, a(3)=165. - Sture Sjöstedt, May 29 2009
a(n) = (1/12)*(2 - (7 - 4*sqrt(3))^n*(1 + sqrt(3)) + (-1 + sqrt(3))*(7 + 4*sqrt(3))^n). - Alan Michael Gómez Calderón, Jun 30 2024

A046175 Indices of triangular numbers which are also pentagonal.

Original entry on oeis.org

0, 1, 20, 285, 3976, 55385, 771420, 10744501, 149651600, 2084377905, 29031639076, 404358569165, 5631988329240, 78443478040201, 1092576704233580, 15217630381229925, 211954248632985376, 2952141850480565345, 41118031658094929460, 572700301362848447101
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{15,-15,1},{0,1,20},20] (* Harvey P. Dale, Sep 10 2021 *)
  • PARI
    concat(0, Vec(-x*(5*x+1)/((x-1)*(x^2-14*x+1)) + O(x^50))) \\ Colin Barker, Jun 23 2015

Formula

From Warut Roonguthai, Jan 05 2001: (Start)
a(n) = 14*a(n-1) - a(n-2) + 6.
G.f.: x*(1+5*x)/((1-x)*(1-14*x+x^2)). (End)
a(n+1) = 7*a(n) + 3 + 2*sqrt(12*a(n)^2 + 12*a(n) + 1). - Richard Choulet, Sep 19 2007
a(n+1) = 15*a(n)-15*a(n-1)+ a(n-2) with a(1)=1, a(2)=20, a(3)=285. - Sture Sjöstedt, May 29 2009
a(n) = (1/12)*(-6 + (7 - 4*sqrt(3))^n*(3 + sqrt(3)) - (-3 + sqrt(3))*(7 + 4*sqrt(3))^n). - Alan Michael Gómez Calderón, Jun 30 2024

A108281 Numbers that are both triangular and pentagonal of the second kind.

Original entry on oeis.org

0, 15, 2926, 567645, 110120220, 21362755051, 4144264359690, 803965923024825, 155965244802456376, 30256453525753512135, 5869596018751378897830, 1138671371184241752666901, 220896376413724148638480980
Offset: 1

Views

Author

Michael Somos, May 30 2005

Keywords

Examples

			15*x^2 + 2926*x^3 + 567645*x^4 + 110120220*x^5 + 21362755051*x^6 + ...
a(4) = 567645 which is 1065*(1065-1)/2 = 615*(3*615+1)/2.
		

References

  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 22.

Crossrefs

Programs

  • PARI
    {a(n) = polchebyshev( 2*n - 2, 2, 7) / 14 + polchebyshev( 2*n - 2, 1, 7) / 84 - 1 / 12} /* Michael Somos, Jun 16 2011 */

Formula

a(n) = 194 * a(n-1) - a(n-2) + 16.
G.f.: x^2 *(15 + x) / ((1 - x) * (1 - 194*x + x^2)).
a(n) = A076139(2*n - 2) = A014979(2 - n).

A276915 Indices of triangular numbers in A276914 which are also pentagonal.

Original entry on oeis.org

0, 1, 10, 143, 1988, 27693, 385710, 5372251, 74825800, 1042188953, 14515819538, 202179284583, 2815994164620, 39221739020101, 546288352116790, 7608815190614963, 105977124316492688, 1476070925240282673, 20559015829047464730, 286350150681424223551
Offset: 0

Views

Author

Daniel Poveda Parrilla, Sep 22 2016

Keywords

Comments

A276914(a(n)) = A014979(n + 1). All numbers which are both triangular and pentagonal can be found in sequence A276914.

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == 14 a[n - 1] - a[n - 2] - 4 (-1)^n, a[0] == 0, a[1] == 1}, a, {n, 19}] (* Michael De Vlieger, Sep 23 2016 *)
  • PARI
    concat(0, Vec(x*(1-3*x)/((1+x)*(1-14*x+x^2)) + O(x^30))) \\ Colin Barker, Sep 23 2016

Formula

a(n) = 14*a(n-1) - a(n-2) - 4*(-1)^n for n>1, a(0)=0, a(1)=1.
a(n) = (A046175(n) + (A046175(n) mod 2))/2.
From Colin Barker, Sep 23 2016: (Start)
G.f.: x*(1 - 3*x) / ((1 + x)*(1 - 14*x + x^2)).
a(n) = 13*a(n-1) + 13*a(n-2) - a(n-3) for n>2.
a(n) = ( -6*(-1)^n + (3+sqrt(3))*(7-4*sqrt(3))^n - (-3+sqrt(3))*(7+4*sqrt(3))^n )/24. (End)
Showing 1-5 of 5 results.