A175410
a(n) = (b(m)-1)*b(m) = Sum_{n=b(m)+1,...,c(m)}n, b=A046174, c=A046175, m=n+1.
Original entry on oeis.org
132, 27060, 5269320, 1022496552, 198362899020, 38481433358940, 7465200453136272, 1448210416843244880, 280945355811546307860, 54501950819034511436292, 10573097513564898455783640
Offset: 1
A046174(2) = 12, then 11*12 = 13+14+15+16+17+18+19+20 = 132, is a term. A046174(3) = 165, then 164*165 = 166+167+,....,+285 = 27060, is a term.
-
lst={};k=1;j=0;Do[b=14*k-j-2;AppendTo[lst,(b-1)*b];j=k;k=b,{n,1,16}];lst
A045899
Numbers k such that k+1 and 3*k+1 are perfect squares.
Original entry on oeis.org
0, 8, 120, 1680, 23408, 326040, 4541160, 63250208, 880961760, 12270214440, 170902040408, 2380358351280, 33154114877520, 461777249934008, 6431727384198600, 89582406128846400, 1247721958419651008, 17378525011746267720, 242051628206028097080, 3371344269872647091408
Offset: 1
Andrej Dujella (duje(AT)math.hr)
- G. C. Greubel, Table of n, a(n) for n = 1..870
- A. Baker and H. Davenport, The Equations 3x^2-2=y^2 and 8x^2-7=z^2, Quart. J. Math. Oxford 20 (1969).
- A. Dujella and A. Pethoe, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49 (1998), 291-306.
- A. Dujella, The Problem of Diophantus and Davenport, References
- A. Dujella, Publications of Andrej Dujella
- Z. Franusic, On the Extension of the Diophantine Pair {1,3} in Z[surd d], J. Int. Seq. 13 (2010) # 10.9.6
- P. Gibbs, 1,3,8,120 ... A Diophantine Problem
- P. Gibbs, Diophantine quadruples and Cayley's hyperdeterminant, arXiv:math/0107203 [math.NT], 2001.
- Index entries for linear recurrences with constant coefficients, signature (15,-15,1).
-
f[n_] := FullSimplify[((Sqrt[3] + 2)*(7 + 4*Sqrt[3])^n - (Sqrt[3] - 2) (7 - 4 Sqrt[3])^n - 4)/6]; Array[f, 18, 0] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Apr 23 2006 *)
Rest[CoefficientList[Series[-8*x^2/((x - 1)*(x^2 - 14*x + 1)), {x,0,50}], x]] (* G. C. Greubel, Jun 07 2017 *)
LinearRecurrence[{15,-15,1},{0,8,120},20] (* Harvey P. Dale, Jul 14 2024 *)
-
x='x+O('x^50); concat([0], Vec(-8*x^2/((x - 1)*(x^2 - 14*x + 1)))) \\ G. C. Greubel, Jun 07 2017
A046174
Indices of pentagonal numbers which are also triangular.
Original entry on oeis.org
0, 1, 12, 165, 2296, 31977, 445380, 6203341, 86401392, 1203416145, 16761424636, 233456528757, 3251629977960, 45289363162681, 630799454299572, 8785902997031325, 122371842504138976, 1704419892060914337
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- W. Sierpiński, Sur les nombres pentagonaux, Bull. Soc. Roy. Sci. Liège 33 (1964) 513-517.
- W. Sierpiński, Sur les nombres pentagonaux, Bull. Soc. Roy. Sci. Liège 33 (1964) 513-517.
- Eric Weisstein's World of Mathematics, Pentagonal Triangular Number.
- Index entries for linear recurrences with constant coefficients, signature (15,-15,1)
-
[ n eq 1 select 0 else n eq 2 select 1 else 14*Self(n-1)-Self(n-2)-2: n in [1..20] ]; // Vincenzo Librandi, Aug 23 2011
-
LinearRecurrence[{15,-15,1},{0,1,12},20] (* Harvey P. Dale, Aug 22 2011 *)
A046173
Indices of square numbers that are also pentagonal.
Original entry on oeis.org
1, 99, 9701, 950599, 93149001, 9127651499, 894416697901, 87643708742799, 8588189040096401, 841554882220704499, 82463790268588944501, 8080609891439495856599, 791817305570802005002201, 77590015336047156994359099, 7603029685627050583442189501
Offset: 1
G.f. = x + 99*x^2 + 9701*x^3 + 950599*x^4 + 93149001*x^5 + ...
99 is a term because 99^2 = 9801 = (1/2) * 81 * (3*81 - 1), so 9801 is the 99th square number, also the 81st pentagonal number, and the second pentagonal square number after 1. - _Bernard Schott_, Mar 10 2019
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 35.
- Colin Barker, Table of n, a(n) for n = 1..503
- M. A. Asiru, All square chiliagonal numbers, Int J Math Edu Sci Technol, 47:7(2016), 1123-1134.
- L. Euler, De solutione problematum diophanteorum per numeros integros, par. 21
- Tanya Khovanova, Recursive Sequences
- Eric Weisstein's World of Mathematics, Pentagonal Square Number
- Index entries for linear recurrences with constant coefficients, signature (98,-1).
Cf.
A036353 (pentagonal square numbers),
A046172 (indices of pentagonal numbers that are also square).
-
CoefficientList[Series[(1 + x)/(1 - 98* x + x^2), {x, 0, 30}], x] (* T. D. Noe, Aug 01 2011 *)
LinearRecurrence[{98, -1}, {1, 99}, 30] (* Harvey P. Dale, Jul 31 2017 *)
-
{a(n) = subst( poltchebi(n) - poltchebi(n-1), 'x, 49) / 48}; /* Michael Somos, Sep 05 2006 */
-
Vec(x*(x+1)/(x^2-98*x+1) + O(x^30)) \\ Colin Barker, Jun 23 2015
A014979
Numbers that are both triangular and pentagonal.
Original entry on oeis.org
0, 1, 210, 40755, 7906276, 1533776805, 297544793910, 57722156241751, 11197800766105800, 2172315626468283465, 421418033734080886426, 81752926228785223683195, 15859646270350599313653420
Offset: 1
Glenn Johnston (glennj(AT)sonic.net)
G.f. = x^2 + 210*x^3 + 40755*x^4 + 7906276*x^5 + 1533776805*x^6 + ...
a(4) = 40755 which is 285*(285-1)/2 = 165*(3*165-1)/2.
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 210, p. 61, Ellipses, Paris 2008.
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 22.
- C. Gill, solution to question no. 8, Mathematical Miscellany, 1 (1836), pp. 220-225, at p. 223.
- J. C. Su, On some properties of two simultaneous polygonal sequences, JIS 10 (2007) 07.10.4, example 4.2.
- Eric Weisstein's World of Mathematics, Pentagonal Triangular Number.
- Index entries for linear recurrences with constant coefficients, signature (195,-195,1).
-
a[ n_] := ChebyshevU[ 2 n - 3, 7] / 14 + ChebyshevT[ 2 n - 3, 7] / 84 - 1/12; (* Michael Somos, Feb 24 2015 *)
LinearRecurrence[{195,-195,1},{0,1,210},20] (* Harvey P. Dale, May 19 2017 *)
-
{a(n) = polchebyshev( 2*n - 3, 2, 7) / 14 + polchebyshev( 2*n - 3, 1, 7) / 84 - 1 / 12}; /* Michael Somos, Jun 16 2011 */
A276915
Indices of triangular numbers in A276914 which are also pentagonal.
Original entry on oeis.org
0, 1, 10, 143, 1988, 27693, 385710, 5372251, 74825800, 1042188953, 14515819538, 202179284583, 2815994164620, 39221739020101, 546288352116790, 7608815190614963, 105977124316492688, 1476070925240282673, 20559015829047464730, 286350150681424223551
Offset: 0
-
RecurrenceTable[{a[n] == 14 a[n - 1] - a[n - 2] - 4 (-1)^n, a[0] == 0, a[1] == 1}, a, {n, 19}] (* Michael De Vlieger, Sep 23 2016 *)
-
concat(0, Vec(x*(1-3*x)/((1+x)*(1-14*x+x^2)) + O(x^30))) \\ Colin Barker, Sep 23 2016
A081065
Numbers n such that n^2 = (1/3)*(n+floor(sqrt(3)*n*floor(sqrt(3)*n))).
Original entry on oeis.org
2, 24, 330, 4592, 63954, 890760, 12406682, 172802784, 2406832290, 33522849272, 466913057514, 6503259955920, 90578726325362, 1261598908599144, 17571805994062650, 244743685008277952, 3408839784121828674, 47479013292697323480, 661297346313640700042
Offset: 1
-
LinearRecurrence[{15,-15,1},{2,24,330},20] (* Harvey P. Dale, Mar 14 2016 *)
-
Vec(2*(1-3*x)/((1-x)*(1-14*x+x^2)) + O(x^40)) \\ Michel Marcus, Nov 17 2014
A189356
a(n) gives y-values solving the Diophantine equation 2*x^2 + (x-1)^2 = y^2 for positive x.
Original entry on oeis.org
3, 41, 571, 7953, 110771, 1542841, 21489003, 299303201, 4168755811, 58063278153, 808717138331, 11263976658481, 156886956080403, 2185153408467161, 30435260762459851, 423908497265970753, 5904283700961130691, 82236063316189858921, 1145400602725696894203
Offset: 1
-
[n le 2 select 38*n-35 else 14*Self(n-1)-Self(n-2): n in [1..19]]; // Bruno Berselli, May 03 2011
-
LinearRecurrence[{14,-1}, {3, 41}, 19] (* Bruno Berselli, Nov 11 2011 *)
Showing 1-8 of 8 results.
Comments