A109613 Odd numbers repeated.
1, 1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 13, 13, 15, 15, 17, 17, 19, 19, 21, 21, 23, 23, 25, 25, 27, 27, 29, 29, 31, 31, 33, 33, 35, 35, 37, 37, 39, 39, 41, 41, 43, 43, 45, 45, 47, 47, 49, 49, 51, 51, 53, 53, 55, 55, 57, 57, 59, 59, 61, 61, 63, 63, 65, 65, 67, 67, 69, 69, 71, 71, 73
Offset: 0
Examples
G.f. = 1 + x + 3*x^2 + 3*x^3 + 5*x^4 + 5*x^5 + 7*x^6 + 7*x^7 + 9*x^8 + 9*x^9 + ... Complete coach system for (a composite) b = 2*n + 1 = 33: Sigma(33) ={[1; 5], [5, 7, 13; 2, 1, 2]} (the first two rows are here 1 and 5, 7, 13), a_{up}(33) = a(15) = 15. But 15 is not in the reduced residue system modulo 33, so the maximal (odd) a number is 13. For the prime b = 31, a_{up}(31) = a(14) = 15 appears as maximum of the first rows. - _Wolfdieter Lang_, Feb 19 2020
References
- Peter Hilton and Jean Pedersen, A Mathematical Tapestry: Demonstrating the Beautiful Unity of Mathematics, Cambridge University Press, 2010, 3rd printing 2012, pp. (260-281).
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Chromatic Number
- Eric Weisstein's World of Mathematics, Johnson Graph
- Eric Weisstein's World of Mathematics, Triangular Graph
- Wikipedia, Round-robin tournament
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Crossrefs
Programs
-
Haskell
a109613 = (+ 1) . (* 2) . (`div` 2) a109613_list = 1 : 1 : map (+ 2) a109613_list -- Reinhard Zumkeller, Oct 27 2012, Feb 21 2011
-
Maple
A109613:=n->2*floor(n/2)+1; seq(A109613(k), k=0..100); # Wesley Ivan Hurt, Oct 22 2013
-
Mathematica
Flatten@ Array[{2# - 1, 2# - 1} &, 37] (* Robert G. Wilson v, Jul 07 2012 *) (# - Boole[EvenQ[#]] &) /@ Range[80] (* Alonso del Arte, Sep 11 2019 *) With[{c=2*Range[0,40]+1},Riffle[c,c]] (* Harvey P. Dale, Jan 02 2020 *)
-
PARI
A109613(n)=n>>1<<1+1 \\ Charles R Greathouse IV, Feb 24 2011
-
Sage
def a(n) : return( len( CuspForms( Gamma0( 5), 2*n + 4, prec=1). basis())); # Michael Somos, May 29 2013
-
Scala
((1 to 49) by 2) flatMap { List.fill(2)() } // _Alonso del Arte, Sep 11 2019
Formula
a(n) = 2*floor(n/2) + 1.
G.f.: (1 + x + x^2 + x^3)/(1 - x^2)^2. - Paul Barry, Oct 14 2005
a(n) = 2*a(n-2) - a(n-4), a(0) = 1, a(1) = 1, a(2) = 3, a(3) = 3. - Philippe Deléham, Nov 03 2008
a(n) = 2*n - a(n-1), with a(0) = 1. - Vincenzo Librandi, Nov 13 2010
a(n) = R(n, -2), where R(n, x) is the n-th row polynomial of A211955. a(n) = (-1)^n + 2*Sum_{k = 1..n} (-1)^(n - k - 2)*4^(k-1)*binomial(n+k, 2*k). Cf. A084159. - Peter Bala, May 01 2012
a(n) = A182579(n+1, n). - Reinhard Zumkeller, May 06 2012
G.f.: ( 1 + x^2 ) / ( (1 + x)*(x - 1)^2 ). - R. J. Mathar, Jul 12 2016
E.g.f.: x*exp(x) + cosh(x). - Ilya Gutkovskiy, Jul 12 2016
From Guenther Schrack, Sep 10 2018: (Start)
a(-n) = -a(n-1).
a(n) = A047270(n+1) - (2*n + 2).
Comments