A327973 Bitwise XOR of two successive generations (centrally aligned) in the trajectory of rule 30 started from a lone 1 cell: a(n) = A110240(n) XOR 2*A110240(n-1).
5, 23, 93, 335, 1493, 5351, 23853, 85951, 382405, 1369943, 6103965, 21996687, 97906325, 350709671, 1562619373, 5631262591, 25064000389, 89782414999, 400033474525, 1441615751887, 6416397448021, 22984338788455, 102408232210605, 369052763468095, 1642598765228869, 5883986891577303, 26216498605021469, 94477513773305103
Offset: 1
Keywords
Links
Crossrefs
Programs
-
PARI
A269160(n) = bitxor(n, bitor(2*n, 4*n)); \\ From A269160. A110240(n) = if(!n,1,A269160(A110240(n-1))); A327973(n) = bitxor(A110240(n), 2*A110240(n-1)); \\ Use this one for writing b-files: A327973write(up_to) = { my(s=1, t, n=0); for(n=1,up_to, t = A269160(s); write("b327973.txt", n, " ", bitxor(2*s, t)); s = t); };
-
Python
def A269160(n): return(n^((n<<1)|(n<<2))) def genA327973(): '''Yield successive terms of A327973.''' s = 1 while True: t = A269160(s) yield (t^(s<<1)) s = t
Comments