A110450 a(n) = n*(n+1)*(n^2+n+1)/2.
0, 3, 21, 78, 210, 465, 903, 1596, 2628, 4095, 6105, 8778, 12246, 16653, 22155, 28920, 37128, 46971, 58653, 72390, 88410, 106953, 128271, 152628, 180300, 211575, 246753, 286146, 330078, 378885, 432915, 492528, 558096, 630003, 708645, 794430
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
GAP
List([0..40],n->n*(n+1)*(n^2+n+1)/2); # Muniru A Asiru, Aug 02 2018
-
Magma
[n*(n+1)*(n^2+n+1)/2: n in [0..40]]; // Vincenzo Librandi, Dec 26 2010
-
Maple
A110450:=n->n*(n+1)*(n^2+n+1)/2; seq(A110450(k), k=0..50); # Wesley Ivan Hurt, Sep 27 2013
-
Mathematica
Table[n (n + 1) (n^2 + n + 1)/2, {n, 0, 100}] (* Wesley Ivan Hurt, Sep 27 2013 *) CoefficientList[Series[-3 x (x^2 + 2 x + 1)/(x - 1)^5, {x, 0, 36}], x] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 3, 21, 78, 210}, 36] (* Robert G. Wilson v, Jul 31 2018 *)
-
PARI
a(n)=n*(n+1)*(n^2+n+1)/2 \\ Charles R Greathouse IV, Oct 16 2015
Formula
From Bruno Berselli, Dec 27 2010: (Start)
G.f.: 3*x*(1 + x)^2/(1 - x)^5.
a(n) = Sum_{i=1..n*(n+1)} i. - Wesley Ivan Hurt, Sep 27 2013
a(n) = Sum_{i=0..n} i*(2*i^2+1), and these are the partial sums of A061317. - Bruno Berselli, Feb 09 2017
a(n) = t(n,t(n,A000217(n))), where t(n,k) = n*(n+1)/2 + k*n and k=0. - Bruno Berselli, Feb 28 2017
E.g.f.: (x/2)*(6 + 15*x + 8*x^2 + x^3)*exp(x). - G. C. Greubel, Aug 24 2017
a(n) = A000217(n*(n+1)). - David James Sycamore, Jul 31 2018
From R. J. Mathar, Mar 23 2021: (Start)
a(n) = 3*A006325(n+1). (End)
Sum_{n>=1} 1/a(n) = 4 - 2*Pi*tanh(sqrt(3)*Pi/2)/sqrt(3). - Amiram Eldar, May 10 2025
Comments