cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110450 a(n) = n*(n+1)*(n^2+n+1)/2.

Original entry on oeis.org

0, 3, 21, 78, 210, 465, 903, 1596, 2628, 4095, 6105, 8778, 12246, 16653, 22155, 28920, 37128, 46971, 58653, 72390, 88410, 106953, 128271, 152628, 180300, 211575, 246753, 286146, 330078, 378885, 432915, 492528, 558096, 630003, 708645, 794430
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 21 2005

Keywords

Comments

This sequence is related to A085461 by 3*A085461(n) = n*a(n) - Sum_{i=0..n-1} a(i) for n>0. - Bruno Berselli, Dec 27 2010
Subsequence of the triangular numbers A000217, see formulas below. - David James Sycamore, Jul 31 2018

Crossrefs

Programs

  • GAP
    List([0..40],n->n*(n+1)*(n^2+n+1)/2); # Muniru A Asiru, Aug 02 2018
  • Magma
    [n*(n+1)*(n^2+n+1)/2: n in [0..40]]; // Vincenzo Librandi, Dec 26 2010
    
  • Maple
    A110450:=n->n*(n+1)*(n^2+n+1)/2; seq(A110450(k), k=0..50); # Wesley Ivan Hurt, Sep 27 2013
  • Mathematica
    Table[n (n + 1) (n^2 + n + 1)/2, {n, 0, 100}] (* Wesley Ivan Hurt, Sep 27 2013 *)
    CoefficientList[Series[-3 x (x^2 + 2 x + 1)/(x - 1)^5, {x, 0, 36}], x] (* or *)
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 3, 21, 78, 210}, 36] (* Robert G. Wilson v, Jul 31 2018 *)
  • PARI
    a(n)=n*(n+1)*(n^2+n+1)/2 \\ Charles R Greathouse IV, Oct 16 2015
    

Formula

a(n) = Sum_{k=0..n} A110449(n,k), sums of rows in triangle A110449.
From Bruno Berselli, Dec 27 2010: (Start)
G.f.: 3*x*(1 + x)^2/(1 - x)^5.
a(n) = A014105(A000217(n)). (End)
a(n) = Sum_{i=1..n*(n+1)} i. - Wesley Ivan Hurt, Sep 27 2013
a(n) = Sum_{i=0..n} i*(2*i^2+1), and these are the partial sums of A061317. - Bruno Berselli, Feb 09 2017
a(n) = t(n,t(n,A000217(n))), where t(n,k) = n*(n+1)/2 + k*n and k=0. - Bruno Berselli, Feb 28 2017
E.g.f.: (x/2)*(6 + 15*x + 8*x^2 + x^3)*exp(x). - G. C. Greubel, Aug 24 2017
a(n) = A000217(n*(n+1)). - David James Sycamore, Jul 31 2018
a(n) = A000217(2*A000217(n)) = A000217(A002378(n)). - Alois P. Heinz, Jul 31 2018
From R. J. Mathar, Mar 23 2021: (Start)
a(n) = A002378(n)+A062392(n).
a(n) = 3*A006325(n+1). (End)
Sum_{n>=1} 1/a(n) = 4 - 2*Pi*tanh(sqrt(3)*Pi/2)/sqrt(3). - Amiram Eldar, May 10 2025