cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A111174 Numbers k such that 24*k + 1 is prime.

Original entry on oeis.org

3, 4, 8, 10, 13, 14, 17, 18, 19, 24, 25, 28, 32, 39, 42, 43, 47, 48, 50, 52, 54, 55, 62, 67, 69, 73, 74, 75, 78, 83, 84, 87, 88, 89, 90, 95, 99, 103, 105, 108, 109, 112, 113, 118, 119, 123, 125, 127, 130, 132, 134, 138, 140, 143, 144, 147, 153, 154, 157, 158, 162
Offset: 1

Views

Author

Parthasarathy Nambi, Oct 21 2005

Keywords

Comments

Half of the even terms in A110801. - R. J. Mathar, Jan 31 2011

Examples

			If k=99 then 24*k + 1 = 2377 (prime).
		

Crossrefs

Cf. A153384 (complement), A107008 (conjecturally equivalent)

Programs

Extensions

More terms from Christian G. Bower, Jan 06 2006

A124411 Numbers k such that 2k+1, 4k+1, 6k+1, 8k+1, 10k+1 and 12k+1 are primes.

Original entry on oeis.org

12705, 13020, 105525, 256410, 966840, 1707510, 1944495, 2310000, 2478630, 3132675, 3836070, 3976770, 4112430, 4532325, 5499585, 5920005, 6610485, 7390845, 8552250, 10739505, 11120340, 12231450, 12338130, 13243230, 16467255
Offset: 1

Views

Author

Artur Jasinski, Oct 31 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[10^7], And @@ PrimeQ /@ ({2, 4, 6, 8, 10, 12}*# + 1) &] (* Ray Chandler, Nov 20 2006 *)
  • PARI
    is(k) = sum(j = 1, 6, isprime(2*j*k+1)) == 6; \\ Jinyuan Wang, Aug 04 2019

Extensions

Extended by Ray Chandler, Nov 20 2006

A167055 Numbers k such that 12*k + 5 is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 8, 9, 11, 12, 14, 16, 19, 21, 22, 23, 24, 26, 29, 32, 33, 37, 38, 42, 43, 46, 47, 49, 51, 53, 54, 56, 58, 63, 64, 66, 67, 68, 71, 73, 77, 78, 79, 81, 84, 87, 88, 91, 92, 98, 99, 101, 102, 106, 107, 108, 113, 114, 117, 119, 123, 124, 129, 133, 134, 136, 141
Offset: 1

Views

Author

Michael B. Porter, Oct 27 2009

Keywords

Comments

Corresponds to odd numbers in A024898.

Examples

			2 is in the sequence since 12*2+5 = 29 is prime.
		

Crossrefs

Cf. A110801, A167056, A167057, A024898, primes are in A040117.

Programs

  • Magma
    [n: n in [1..150] | IsPrime(12*n+5)]; // Vincenzo Librandi, May 20 2014
  • Mathematica
    Select[Range[0,150],PrimeQ[12#+5]&] (* Harvey P. Dale, Oct 07 2012 *)
  • PARI
    isA167055(n) = isprime(12*n+5)
    

A167056 Numbers k such that 12*k + 7 is prime.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 8, 10, 11, 12, 13, 16, 17, 18, 22, 23, 25, 27, 30, 31, 36, 38, 40, 41, 43, 45, 47, 50, 51, 52, 53, 57, 60, 61, 62, 65, 67, 68, 71, 73, 75, 76, 80, 82, 86, 87, 88, 90, 93, 97, 102, 106, 107, 108, 110, 116, 118, 120, 121, 122, 123, 127, 128, 130, 131, 135, 138
Offset: 1

Views

Author

Michael B. Porter, Oct 27 2009

Keywords

Comments

Corresponds to odd numbers in A024899.

Examples

			2 is in the sequence since 12*2+7 = 31 is prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..150] | IsPrime(12*n+7)]; // Vincenzo Librandi, May 20 2014
  • Mathematica
    Select[Range[0, 200], PrimeQ[12 # + 7] &] (* Vincenzo Librandi, May 20 2014 *)
  • PARI
    isA167056(n) = isprime(12*n+7)
    

A167057 Numbers k such that 12*k + 11 is prime.

Original entry on oeis.org

0, 1, 3, 4, 5, 6, 8, 10, 13, 14, 15, 18, 19, 20, 21, 25, 28, 29, 31, 34, 35, 36, 38, 39, 40, 41, 46, 48, 49, 53, 54, 56, 59, 61, 68, 69, 71, 73, 75, 78, 80, 81, 84, 85, 90, 91, 95, 96, 98, 101, 104, 106, 108, 109, 113, 118, 119, 120, 123, 124, 125, 126, 129, 130, 131, 133
Offset: 1

Views

Author

Michael B. Porter, Oct 27 2009

Keywords

Comments

Corresponds to even numbers in A024898.

Examples

			3 is in the sequence since 12*3+11 = 47 is prime.
		

Crossrefs

Cf. A110801, A167055, A167056, A024898, primes are in A068231.

Programs

  • Magma
    [n: n in [0..200] |IsPrime(12*n+11)]; // Vincenzo Librandi, Mar 25 2010
  • Mathematica
    Select[Range[0, 200], PrimeQ[12 # + 11] &] (* Vincenzo Librandi, May 20 2014 *)
  • PARI
    isA167057(n) = isprime(12*n+11)
    

Formula

a(n) = A138620(n)-1. [From R. J. Mathar, Oct 29 2009]

A123985 Numbers n for which 12n+1, 12n+5, 12n+7 and 12n+11 are primes.

Original entry on oeis.org

1, 3, 8, 38, 71, 73, 108, 166, 288, 376, 656, 871, 1156, 1338, 1618, 1751, 1776, 1856, 1921, 1963, 2311, 2418, 2801, 3501, 3538, 3648, 3818, 4266, 4541, 4611, 4651, 5076, 6723, 6751, 7388, 7533, 7621, 7698, 7738, 7796, 8083, 8193, 9073, 9243, 9418, 9516
Offset: 1

Views

Author

Artur Jasinski, Oct 30 2006

Keywords

Crossrefs

Cf. A110801.

Programs

  • Mathematica
    Select[Range[10^4], And @@ PrimeQ /@ ({1, 5, 7, 11} + 12#) &] (* Ray Chandler, Nov 22 2006 *)
  • PARI
    P=isprime;
    for(n=0, 10^5, if(P(12*n+1) && P(12*n+5) && P(12*n+7) && P(12*n+11), print1(n", ")));
    \\ Joerg Arndt, Jul 11 2014

A153383 Numbers n such that 12*n+1 is not prime.

Original entry on oeis.org

0, 2, 4, 7, 10, 11, 12, 14, 17, 18, 21, 22, 24, 25, 27, 30, 32, 37, 39, 40, 41, 42, 43, 44, 46, 47, 49, 52, 53, 54, 57, 58, 60, 62, 65, 66, 67, 68, 70, 72, 74, 75, 76, 77, 79, 80, 81, 82, 87, 88, 90, 92, 95, 97, 98, 99, 102, 105, 106, 107, 109, 111, 112, 113, 114
Offset: 1

Views

Author

Vincenzo Librandi, Dec 25 2008

Keywords

Comments

Complement of A110801 (12*n+1 is prime). [Klaus Brockhaus, Jan 02 2009]

Examples

			Triangle begins:
*;
*,2;
*,*,4;
*,*,*,*;
*,*,*,*,10;
*,*,*,*,*,14;
*,*,*,*,*,*,*:
*,7,*,*,*,*,*,24;
*,*,11,*,*,*,*,*,30;
where * marks the non-integer values of (2*h*k + k + h)/6 with h >= k >= 1.- _Vincenzo Librandi_, Jan 13 2013
		

Crossrefs

Cf. A110801.

Programs

  • Magma
    [ n: n in [0..120] | not IsPrime(12*n+1) ]; // Klaus Brockhaus, Jan 02 2009
  • Mathematica
    Select[Range[0, 200], !PrimeQ[12*# + 1] &] (* Vincenzo Librandi, Jan 13 2013 *)

Extensions

More terms from Klaus Brockhaus, Jan 02 2009
0 added by Arkadiusz Wesolowski, Aug 03 2011

A123979 Numbers k such that 12*k+1, 12*k+5 and 12*k+7 are primes.

Original entry on oeis.org

1, 3, 8, 16, 23, 38, 51, 71, 73, 108, 141, 156, 166, 178, 198, 233, 271, 288, 346, 376, 451, 453, 471, 478, 646, 656, 773, 778, 786, 871, 926, 1003, 1013, 1031, 1156, 1213, 1311, 1338, 1543, 1576, 1618, 1696, 1751, 1776, 1793, 1846, 1856, 1921, 1933, 1963
Offset: 1

Views

Author

Artur Jasinski, Oct 30 2006

Keywords

Crossrefs

Cf. A110801.

Programs

  • Maple
    a:=proc(n) if isprime(12*n+1)=true and isprime(12*n+5)=true and isprime(12*n+7)=true then n else fi end: seq(a(n),n=1..2800); # Emeric Deutsch, Nov 06 2006
  • Mathematica
    Select[Range[2000], And @@ PrimeQ /@ ({1, 5, 7} + 12#) &] (* Ray Chandler, Nov 05 2006 *)

Extensions

Extended by Ray Chandler, Nov 05 2006
More terms from Emeric Deutsch, Nov 06 2006

A255218 Numbers k such that 12*k+1, 24*k+1, 36*k+1 and 72*k+1 are all prime.

Original entry on oeis.org

28, 103, 190, 253, 355, 848, 1328, 1783, 1898, 1958, 1988, 2170, 2213, 3003, 3533, 3808, 3913, 3988, 4450, 4488, 4593, 4800, 5460, 5808, 5853, 6448, 6545, 6903, 7103, 7238, 7295, 7400, 7483, 7693, 8533, 9310, 9780, 10260, 10885, 12185, 12628, 15513, 16163
Offset: 1

Views

Author

Vincenzo Librandi, Feb 26 2015

Keywords

Crossrefs

Subsequence of A110801 and A111174.
Cf. A255578.

Programs

  • Magma
    [n: n in [0..20000] | IsPrime(12*n+1) and IsPrime(24*n+1) and IsPrime(36*n+1) and IsPrime(72*n+1)];
    
  • Magma
    [n: n in [0..20000] | forall{i: i in Divisors(6) | IsPrime(12*i*n+1)}];
  • Mathematica
    Select[Range[10000], PrimeQ[12 # + 1] && PrimeQ[24 # + 1] && PrimeQ[36 # + 1] && PrimeQ[72 # + 1] &]
    Select[Range[17000],AllTrue[{12,24,36,72}#+1,PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 16 2016 *)

A123982 Numbers k such that 12*k+1, 12*k+5 and 12*k+11 are primes.

Original entry on oeis.org

1, 3, 8, 19, 29, 38, 56, 71, 73, 78, 84, 91, 101, 108, 119, 124, 129, 133, 134, 166, 199, 203, 224, 236, 246, 288, 294, 301, 316, 344, 376, 399, 411, 423, 488, 623, 628, 631, 656, 686, 724, 728, 819, 861, 871, 883, 894, 1008, 1009, 1053, 1074, 1086, 1156, 1179
Offset: 1

Views

Author

Artur Jasinski, Oct 30 2006

Keywords

Crossrefs

Cf. A110801.

Programs

  • Maple
    a:=proc(n) if isprime(12*n+1)=true and isprime(12*n+5)=true and isprime(12*n+11)=true then n else fi end: seq(a(n),n=1..1400); # Emeric Deutsch, Nov 06 2006
  • Mathematica
    Select[Range[1200], And @@ PrimeQ /@ ({1, 5, 11} + 12#) &] (* Ray Chandler, Nov 05 2006 *)

Extensions

Extended by Ray Chandler, Nov 05 2006
More terms from Emeric Deutsch, Nov 06 2006
Showing 1-10 of 10 results.