Original entry on oeis.org
76, 101, 149, 198, 201, 251, 326, 351, 368, 394, 426, 451, 476, 489, 492, 514, 601, 626, 639, 683, 688, 701, 801, 835, 879, 884, 933, 973, 976, 1051, 1076, 1098, 1168, 1176, 1178, 1201, 1215, 1227, 1251, 1301, 1351, 1359, 1374, 1376, 1459, 1551, 1570
Offset: 1
-
q[n_] := Module[{f = FactorInteger[n], f1, f2}, f1 = Select[f, MemberQ[{1, 5, 7, 11}, Mod[First[#], 24]] &]; f2 = Select[f, MemberQ[{13, 17, 19, 23}, Mod[First[#], 24]] &]; AllTrue[f2[[;;, 2]], EvenQ] && Count[f1[[;;, 2]], ?OddQ] == 1]; Select[Range[1600], CompositeQ[24 * # + 1] && q[24 * # + 1] &] (* _Amiram Eldar, Aug 24 2024 *)
A107008
Primes of the form x^2 + 24*y^2.
Original entry on oeis.org
73, 97, 193, 241, 313, 337, 409, 433, 457, 577, 601, 673, 769, 937, 1009, 1033, 1129, 1153, 1201, 1249, 1297, 1321, 1489, 1609, 1657, 1753, 1777, 1801, 1873, 1993, 2017, 2089, 2113, 2137, 2161, 2281, 2377, 2473, 2521, 2593, 2617, 2689, 2713
Offset: 1
- Vincenzo Librandi, N. J. A. Sloane and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi, next 143 terms from N. J. A. Sloane]
- P. L. Clark, J. Hicks, H. Parshall, K. Thompson, GONI: primes represented by binary quadratic forms, INTEGERS 13 (2013) #A37
- D. A. Cox, Primes of the form x^2 + n*y^2, A Wiley-Interscience publication, 1989
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
- J. Voight, Quadratic forms that represent almost the same primes, Math. Comp. 76 (2007) 1589-1617
Subset of
A033199 (2y here = y there).
See also the cross-references in
A140633.
-
QuadPrimes[1, 0, 24, 10000] (* see A106856 *)
-
is(n) = isprime(n) && #qfbsolve(Qfb(1, 0, 24), n) == 2 \\ David A. Corneth, Jun 21 2020
Recomputed b-file, deleted incorrect Mma program. -
N. J. A. Sloane, Jun 08 2014
A005123
Numbers k such that 8k + 1 is prime.
Original entry on oeis.org
2, 5, 9, 11, 12, 14, 17, 24, 29, 30, 32, 35, 39, 42, 44, 50, 51, 54, 56, 57, 65, 71, 72, 74, 75, 77, 80, 84, 95, 96, 101, 107, 110, 116, 117, 119, 122, 126, 129, 131, 137, 141, 144, 149, 150, 152, 156, 161, 162, 165, 170, 176, 179, 185, 186, 194, 200, 201
Offset: 1
A114913
Numbers k such that A114912(k) = 1. Numbers k such that A000009(k) == 2 (mod 4).
Original entry on oeis.org
3, 4, 8, 10, 13, 14, 17, 18, 19, 24, 25, 28, 32, 39, 42, 43, 47, 48, 50, 52, 54, 55, 62, 67, 69, 73, 74, 75, 76, 78, 83, 84, 87, 88, 89, 90, 95, 99, 101, 103, 105, 108, 109, 112, 113, 118, 119, 123, 125, 127, 130, 132, 134, 138, 140, 143, 144, 147, 149, 153, 154, 157
Offset: 1
See comments in
A113780 for explanation.
-
q[n_] := Module[{f = FactorInteger[n], f1, f2}, f1 = Select[f, MemberQ[{1, 5, 7, 11}, Mod[First[#], 24]] &]; f2 = Select[f, MemberQ[{13, 17, 19, 23}, Mod[First[#], 24]] &]; AllTrue[f2[[;;, 2]], EvenQ] && Count[f1[[;;, 2]], ?OddQ] == 1]; Select[Range[160], q[24 * # + 1] &] (* _Amiram Eldar, Aug 24 2024 *)
A153384
Numbers n such that 24*n+1 is not prime.
Original entry on oeis.org
0, 1, 2, 5, 6, 7, 9, 11, 12, 15, 16, 20, 21, 22, 23, 26, 27, 29, 30, 31, 33, 34, 35, 36, 37, 38, 40, 41, 44, 45, 46, 49, 51, 53, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 68, 70, 71, 72, 76, 77, 79, 80, 81, 82, 85, 86, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102
Offset: 1
Triangle begins:
*;
*,1;
*,*,2;
*,*,*,*;
*,*,*,*,5;
*,*,*,*,*,7;
*,*,*,*,*,*,*;
*,*,*,*,*,*,*,12;
*,*,*,*,*,*,*,*,15;
*,*,*,*,*,*,*,*,*,*;
*,*,*,*,*,*,*,*,*,*,22; etc.
where * marks the non-integer values of (2*h*k + k + h)/12 with h >= k >= 1. - _Vincenzo Librandi_, Jan 14 2013
A255218
Numbers k such that 12*k+1, 24*k+1, 36*k+1 and 72*k+1 are all prime.
Original entry on oeis.org
28, 103, 190, 253, 355, 848, 1328, 1783, 1898, 1958, 1988, 2170, 2213, 3003, 3533, 3808, 3913, 3988, 4450, 4488, 4593, 4800, 5460, 5808, 5853, 6448, 6545, 6903, 7103, 7238, 7295, 7400, 7483, 7693, 8533, 9310, 9780, 10260, 10885, 12185, 12628, 15513, 16163
Offset: 1
-
[n: n in [0..20000] | IsPrime(12*n+1) and IsPrime(24*n+1) and IsPrime(36*n+1) and IsPrime(72*n+1)];
-
[n: n in [0..20000] | forall{i: i in Divisors(6) | IsPrime(12*i*n+1)}];
-
Select[Range[10000], PrimeQ[12 # + 1] && PrimeQ[24 # + 1] && PrimeQ[36 # + 1] && PrimeQ[72 # + 1] &]
Select[Range[17000],AllTrue[{12,24,36,72}#+1,PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 16 2016 *)
A139527
Numbers n such that numbers 24n+5 are primes.
Original entry on oeis.org
0, 1, 2, 4, 6, 7, 8, 11, 12, 13, 16, 19, 21, 23, 27, 28, 29, 32, 33, 34, 39, 42, 44, 46, 49, 51, 53, 54, 57, 62, 67, 68, 71, 72, 78, 79, 81, 82, 83, 86, 89, 92, 93, 96, 97, 98, 99, 103, 106, 109, 112, 114, 116, 118, 119, 121, 123, 134, 141, 142, 144, 147, 148, 149, 153, 154
Offset: 1
-
a = {}; Do[If[PrimeQ[24 n + 5], AppendTo[a, n]], {n, 0, 200}]; a
Select[Table[(Prime[n]-5)/24,{n,800}],IntegerQ] (* Harvey P. Dale, Feb 25 2016 *)
Showing 1-7 of 7 results.
Comments