cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A057569 Numbers of the form k*(5*k+1)/2 or k*(5*k-1)/2.

Original entry on oeis.org

0, 2, 3, 9, 11, 21, 24, 38, 42, 60, 65, 87, 93, 119, 126, 156, 164, 198, 207, 245, 255, 297, 308, 354, 366, 416, 429, 483, 497, 555, 570, 632, 648, 714, 731, 801, 819, 893, 912, 990, 1010, 1092, 1113, 1199, 1221, 1311, 1334, 1428, 1452, 1550
Offset: 1

Views

Author

N. J. A. Sloane, Oct 04 2000

Keywords

Comments

a(n) is the set of all m such that 40*m+1 is a perfect square. - Gary Detlefs, Feb 22 2010
Integers of the form (n^2 - n) / 10. Numbers of the form n * (5*n - 1) / 2 where n is an integer. - Michael Somos, Jan 13 2012
Also integers of the form sum_{k=1..n} k/5. - Alonso del Arte, Jan 20 2012
These numbers appear in a theta function identity. See the Hardy-Wright reference, Theorem 356 on p. 284. See the G.f. of A113428. - Wolfdieter Lang, Oct 28 2016

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth ed., Clarendon Press, Oxford, 2003, p. 284.

Crossrefs

Programs

  • Magma
    [(10*(n^2-n)+12*(-1)^n*(n div 2))/16: n in [1..60]]; // Vincenzo Librandi, Oct 29 2016
  • Mathematica
    Select[Table[Plus@@Range[n]/5, {n, 0, 199}], IntegerQ] (* Alonso del Arte, Jan 20 2012 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,2,3,9,11},50] (* Harvey P. Dale, Jul 05 2021 *)
  • PARI
    {a(n) = (10 * (n^2 - n) + 12 * (-1)^n * (n\2)) / 16}; \\ Michael Somos, Jan 13 2012
    
  • PARI
    Vec(x^2*(2*x^2+x+2) / ((1-x)^3*(1+x)^2) + O(x^60)) \\ Colin Barker, Jun 13 2017
    

Formula

A005475 UNION A005476. G.f.: x^2*(2x^2+x+2)/((1-x)^3*(1+x)^2). a(n) = A132356(n+1)/4. - R. J. Mathar, Apr 07 2008
a(n) = (A090771(n)^2 -1)/40. - Gary Detlefs, Feb 22 2010
|A113428(n)| is the characteristic function of the numbers a(n).
a(n) = a(1 - n) for all n in Z. - Michael Somos, Jan 13 2012
From Colin Barker, Jun 13 2017: (Start)
a(n) = n*(5*n - 2)/8 for n even.
a(n) = (5*n - 3)*(n - 1)/8 for n odd.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>5.
(End)
From Amiram Eldar, Mar 17 2022: (Start)
Sum_{n>=2} 1/a(n) = 10 - 2*sqrt(1+2/sqrt(5))*Pi.
Sum_{n>=2} (-1)^n/a(n) = 2*sqrt(5)*log(phi) - 5*(2-log(5)), where phi is the golden ratio (A001622). (End)

A113429 Expansion of f(-x, -x^4) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, -1, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Oct 31 2005

Keywords

Comments

For the g.f. identity see the Hardy-Wright reference, Theorem 355 on p. 284. - Wolfdieter Lang, Oct 28 2016

Examples

			G.f. = 1 - x - x^4 + x^7 + x^13 - x^18 - x^27 + x^34 + x^46 - x^55 - x^70 + ...
G.f. = q^9 - q^49 - q^169 + q^289 + q^529 - q^729 - q^1089 + q^1369 + q^1849 + ...
		

References

  • G. H. Hardy, Ramanujan, AMS Chelsea Publ., Providence, RI, 2002, p. 93.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth ed., Clarendon Press, Oxford, 2003, p. 284.

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^5] QPochhammer[ x^4, x^5] QPochhammer[ x^5], {x, 0, n}]; (* Michael Somos, Jun 26 2017 *)
    a[ n_] := Module[{m = 40 n + 9, k}, If[IntegerQ[k = Sqrt[m]], If[Mod[k, 10] == 7, k = -k]; (-1)^Quotient[k, 10], 0]]; (* Michael Somos, Jun 26 2017 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, 1 - x^k*[1, 1, 0, 0, 1][k%5 + 1], 1 + x * O(x^n)), n))};
    
  • PARI
    {a(n) = my(m, k); if( n<0, 0, issquare(m = 40*n + 9, &k), if( k%10==7, k=-k); (-1)^(k\10), 0)}; /* Michael Somos, Oct 29 2016 */

Formula

Euler transform of period 5 sequence [-1, 0, 0, -1, -1, ...].
|a(n)| is the characteristic function of A085787.
G.f.: Product_{k>0} (1 - x^(5*k)) * (1 - x^(5*k-1)) * (1 - x^(5*k-4)) = Sum_{k in Z} (-1)^k * x^((5*k^2+3*k)/2).
f(a, b) = Sum_{k in Z} a^((k^2+k)/2) * b^((k^2-k)/2) is Ramanujan's general theta function.
G.f.: Sum_{n>=0} (x^(n*(n+1)) * Product_{k>=n+1} (1-x^k)). - Joerg Arndt, Apr 07 2011
From Wolfdieter Lang, Oct 30 2016: (Start)
a(n) = (-1)^k if n = b(2*k) for k >= 0, a(n) = (-1)^k if n = b(2*k-1), for k >= 1, and a(n) = 0 otherwise, where b(n) = A085787(n). See the second formula.
G.f.: Sum_{n>=0} (-1)^n*x^(n*(5*n+3)/2)*(1-x^(2*n+1)). See the Hardy reference, p. 93, G_1(x,x) from eq. (6.11.1) with C_n(x,x) = 1.
(End)
G.f.: Sum_{n>=0} (-1)^n*x^(n*(5*n-3)/2)*(1-x^(4*(2*n+1))). Reordered G_1(x,x) from the preceding formula. This is G_4(x,x) from Hardy, p. 93, eq. (6.11.1) with C_n(x,x) = 1. Note that Hardy uses only G_0, G_1 and G_2. - Wolfdieter Lang, Nov 01 2016
a(n) = -(1/n)*Sum_{k=1..n} A284361(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017

A036822 Number of partitions satisfying cn(1,5) = cn(4,5) = 0.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 3, 4, 4, 7, 6, 10, 11, 13, 18, 19, 25, 30, 33, 45, 47, 61, 70, 81, 100, 111, 135, 157, 177, 218, 238, 288, 328, 374, 443, 495, 579, 663, 747, 878, 973, 1134, 1281, 1448, 1670, 1863, 2135, 2414, 2705, 3103
Offset: 1

Views

Author

Keywords

Comments

For a given partition cn(i,n) means the number of its parts equal to i modulo n.
Short: (1=4 := 0).
a(n) is the number of partitions with parts congruent to 0, 2 or 3 mod 5. - George Beck, Aug 08 2020

Crossrefs

Cf. A036820.

Programs

  • Maple
    c := proc(L,i,n)
        local a,p;
        a := 0 ;
        for p in L do
            if modp(p,n) = i then
                a := a+1 ;
            end if;
        end do:
        a ;
    end proc:
    A036822 := proc(n)
        local a ,p;
        a := 0 ;
        for p in combinat[partition](n) do
            if c(p,1,5) = 0 then
                if c(p,4,5) = 0 then
                    a := a+1 ;
                end if;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Oct 19 2014
  • Mathematica
    nmax = 50; Rest[CoefficientList[Series[Product[1/((1 - x^(5*k)) * (1 - x^(5*k-2)) * (1 - x^(5*k-3))), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 05 2016 *)

Formula

Convolution inverse of A113428. - George Beck, May 21 2016
G.f.: Product_{k>=1} 1/((1 - x^(5*k)) * (1 - x^(5*k - 2)) * (1 - x^(5*k - 3))). - Vaclav Kotesovec, Jul 05 2016
a(n) ~ exp(Pi*sqrt(2*n/5)) / (2*sqrt(2*(5+sqrt(5)))*n). - Vaclav Kotesovec, Jul 05 2016

A133101 Expansion of f(x^2, x^3) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Sep 11 2007

Keywords

Examples

			G.f. = 1 + x^2 + x^3 + x^9 + x^11 + x^21 + x^24 + x^38 + x^42 + x^60 + x^65 + ...
G.f. = q + q^81 + q^121 + q^361 + q^441 + q^841 + q^961 + q^1521 + q^1681 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x^2, x^5] QPochhammer[ -x^3, x^5] QPochhammer[ x^5], {x, 0, n}]; (* Michael Somos, Oct 31 2015 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod(k=1,n, 1 + x^k*[ -1, 0, 1, 1, 0][k%5 + 1], 1 + x * O(x^n)), n))};

Formula

The characteristic function of A057569.
Euler transform of period 10 sequence [ 0, 1, 1, -1, -1, -1, 1, 1, 0, -1, ...].
G.f.: Prod_{k>0} (1 - x^(5*k)) * (1 + x^(5*k - 2)) * (1 + x^(5*k - 3)) = Sum_{k in Z} x^((5*k^2 + k) / 2).
a(n) = abs(A113428(n)).

A259357 Expansion of f(-x^5)^2 / f(-x, -x^4) in powers of x where f(,) is the Ramanujan general theta function.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 2, 3, 3, 3, 3, 5, 5, 5, 6, 7, 7, 9, 9, 11, 11, 13, 13, 16, 17, 19, 20, 23, 24, 27, 29, 32, 34, 38, 40, 46, 48, 52, 56, 62, 65, 72, 76, 84, 89, 97, 102, 113, 119, 129, 137, 149, 157, 171, 181, 196, 208, 224, 236, 256, 270, 290, 308, 331
Offset: 0

Views

Author

Michael Somos, Jun 24 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Rogers-Ramanujan functions: G(q) (see A003114), H(q) (A003106).

Examples

			G.f. = 1 + x + x^2 + x^3 + 2*x^4 + x^5 + 2*x^6 + 2*x^7 + 3*x^8 + 3*x^9 + ...
G.f. = q^23 + q^143 + q^263 + q^383 + 2*q^503 + q^623 + 2*q^743 + 2*q^863 + ...
		

References

  • G. E. Andrews and B. C. Berndt, Ramanujan's Lost Notebook, Part III, Springer, 2012, see p. 12, Entry 2.1.3, Equation (2.1.21).
  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 23, equation 3.

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^5] / (QPochhammer[ x, x^5] QPochhammer[ x^4, x^5]), {x, 0, n}];
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^[ 1, -1, 0, 0, -1][k%5+1]), n))};

Formula

Expansion of f(-x^5) * f(-x^2, -x^3) / f(-x) in powers of x where f(,) is the Ramanujan general theta function.
Expansion of f(-x^5) * G(x) in powers of x where f() is a Ramanujan theta function and G() is a Rogers-Ramanujan function. - Michael Somos, Jul 09 2015
Euler transform of period 5 sequence [ 1, 0, 0, 1, -1, ...].
G.f.: Product_{k>0} (1 - x^(5*k)) / ((1 - x^(5*k-4)) * (1 - x^(5*k-1))).
Convolution of A035959 and A113428.

A205183 Euler transform of period 5 sequence [ 2, 1, 1, 2, 1, ...].

Original entry on oeis.org

1, 2, 4, 7, 13, 21, 35, 54, 84, 126, 188, 273, 396, 562, 794, 1106, 1533, 2099, 2862, 3864, 5194, 6927, 9198, 12131, 15938, 20817, 27087, 35070, 45246, 58114, 74400, 94870, 120602, 152768, 192957, 242928, 305025, 381857, 476839, 593830, 737776
Offset: 0

Views

Author

Michael Somos, Jan 23 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + 2*x + 4*x^2 + 7*x^3 + 13*x^4 + 21*x^5 + 35*x^6 + 54*x^7 + 84*x^8 + ...
q^-7 + 2*q^113 + 4*q^233 + 7*q^353 + 13*q^473 + 21*q^593 + 35*q^713 + ...
		

Crossrefs

Programs

  • Mathematica
    f[x_,y_]:= QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; CoefficientList[Series[f[-q^2,-q^3]/QPochhammer[q]^2, {q,0,100}], q] (* G. C. Greubel, Apr 14 2018 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, 1 / (1 - x^k)^[ 1, 2, 1, 1, 2][k%5 + 1], 1 + x * O(x^n)), n))}

Formula

Expansion of G(x) / f(-x) = f(-x^2, -x^3) / f(-x)^2 in powers of x where f() is a Ramanujan theta function and G() is a Rogers-Ramanujan function.
G.f. is the limit as n goes to infinity of Sum_{k=0..n} x^k^2 / ((x;x)k * (x;x){n-k}) = Sum_{k=-n..n} (-1)^k * x^(k*(5*k - 1)/2) / ((x;x){n-k} * (x;x){n+k}).
G.f.: (Sum_{k>=0} x^k^2 / ((1 - x) ... (1 - x^k))) / Product_{k>0} (1 - x^k).
G.f.: (Sum_{k} (-1)^k * x^(k*(5*k - 1)/2)) / Product_{k>0} (1 - x^k)^2.
Convolution of A000041 and A003114.
a(n) ~ exp(Pi*sqrt(14*n/15)) * sqrt(7*phi) / (4*3^(1/2)*5^(3/4)*n), where phi = A001622 = (1 + sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Mar 24 2018
Showing 1-6 of 6 results.