cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A113685 Triangular array read by rows: T(n,k) is the number of partitions of n in which sum of odd parts is k, for k=0,1,...,n; n>=0.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 1, 0, 2, 2, 0, 1, 0, 2, 0, 2, 0, 2, 0, 3, 3, 0, 2, 0, 2, 0, 4, 0, 3, 0, 4, 0, 3, 0, 5, 5, 0, 3, 0, 4, 0, 4, 0, 6, 0, 5, 0, 6, 0, 6, 0, 5, 0, 8, 7, 0, 5, 0, 6, 0, 8, 0, 6, 0, 10, 0, 7, 0, 10, 0, 9, 0, 10, 0, 8, 0, 12, 11, 0, 7, 0, 10, 0, 12, 0, 12, 0, 10, 0, 15, 0, 11, 0, 14, 0, 15, 0
Offset: 0

Views

Author

Clark Kimberling, Nov 05 2005

Keywords

Comments

(Sum over row n) = A000041(n) = number of partitions of n.
Reversal of this array is array in A113686.
From Gary W. Adamson, Apr 11 2010: (Start)
Let M = an infinite lower triangular matrix with A000041 interleaved with zeros: (1, 0, 1, 0, 2, 0, 3, 0, 5, ...) and Q = A000009 diagonalized with the rest zeros.
Then A113685 = M*Q. That row sums of the triangle (deleting prefaced zeros) = A000041 is equivalent to the identity: p(x) = p(x^2) * A000009(x). (End)

Examples

			First 5 rows:
  1;
  0, 1;
  1, 0, 1;
  0, 1, 0, 2;
  2, 0, 1, 0, 2;
  0, 2, 0, 2, 0, 3.
The partitions of 5 are 5, 1+4, 2+3, 1+1+3, 1+2+2, 1+1+1+2, 1+1+1+1+1.
The sums of odd parts are 5,1,3,5,1,3,5, respectively, so that the numbers of 0's, 1's, 2s, 3s, 4s, 5s are 0,2,0,2,0,3, which is row 5 of the array.
		

Crossrefs

Programs

  • Maple
    g := 1/product((1-t^(2*j-1)*x^(2*j-1))*(1-x^(2*j)),j=1..20):
    gser := simplify(series(g,x=0,22)):
    P[0] := 1: for n from 1 to 14 do P[n] := coeff(gser,x^n) od:
    for n from 0 to 14 do seq(coeff(P[n],t,j),j=0..n) od;
    # yields sequence in triangular form - Emeric Deutsch, Feb 17 2006

Formula

G.f.: G(t,x) = 1/Product_{j>=1} (1 - t^(2j-1)*x^(2j-1))*(1-x^(2j)). - Emeric Deutsch, Feb 17 2006

Extensions

More terms from Emeric Deutsch, Feb 17 2006

A366528 Sum of odd prime indices of n.

Original entry on oeis.org

0, 1, 0, 2, 3, 1, 0, 3, 0, 4, 5, 2, 0, 1, 3, 4, 7, 1, 0, 5, 0, 6, 9, 3, 6, 1, 0, 2, 0, 4, 11, 5, 5, 8, 3, 2, 0, 1, 0, 6, 13, 1, 0, 7, 3, 10, 15, 4, 0, 7, 7, 2, 0, 1, 8, 3, 0, 1, 17, 5, 0, 12, 0, 6, 3, 6, 19, 9, 9, 4, 0, 3, 21, 1, 6, 2, 5, 1, 0, 7, 0, 14, 23, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 22 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239(n).

Examples

			The prime indices of 198 are {1,2,2,5}, so a(198) = 1+5 = 6.
		

Crossrefs

Zeros are A066207, counted by A035363.
The triangle for this rank statistic is A113685, without zeros A365067.
For count instead of sum we have A257991, even A257992.
Nonzeros are A366322, counted by A086543.
The even version is A366531, halved A366533, triangle A113686.
A000009 counts partitions into odd parts, ranks A066208.
A053253 = partitions with all odd parts and conjugate parts, ranks A352143.
A066967 adds up sums of odd parts over all partitions.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A162641 counts even prime exponents, odd A162642.
A352142 = odd indices with odd exponents, counted by A117958.

Programs

  • Mathematica
    Table[Total[Cases[FactorInteger[n], {p_?(OddQ@*PrimePi),k_}:>PrimePi[p]*k]],{n,100}]

Formula

a(n) = A056239(n) - A366531(n).

A239261 Number of partitions of n having (sum of odd parts) = (sum of even parts).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 4, 0, 0, 0, 12, 0, 0, 0, 30, 0, 0, 0, 70, 0, 0, 0, 165, 0, 0, 0, 330, 0, 0, 0, 704, 0, 0, 0, 1380, 0, 0, 0, 2688, 0, 0, 0, 4984, 0, 0, 0, 9394, 0, 0, 0, 16665, 0, 0, 0, 29970, 0, 0, 0, 52096, 0, 0, 0, 90090, 0, 0, 0, 152064, 0, 0, 0
Offset: 0

Views

Author

Clark Kimberling, Mar 13 2014

Keywords

Examples

			a(8) counts these 4 partitions:  431, 41111, 3221, 221111.
From _Gus Wiseman_, Oct 24 2023: (Start)
The a(0) = 1 through a(12) = 12 partitions:
  ()  .  .  .  (211)  .  .  .  (431)     .  .  .  (633)
                               (3221)             (651)
                               (41111)            (4332)
                               (221111)           (5421)
                                                  (33222)
                                                  (52221)
                                                  (63111)
                                                  (432111)
                                                  (3222111)
                                                  (6111111)
                                                  (42111111)
                                                  (222111111)
(End)
		

Crossrefs

The LHS (sum of odd parts) is counted by A113685.
The RHS (sum of even parts) is counted by A113686.
Without all the zeros we have a(4n) = A249914(n).
The strict case (without zeros) is A255001.
The Heinz numbers of these partitions are A366748, see also A019507.
A000009 counts partitions into odd parts, ranks A066208.
A035363 counts partitions into even parts, ranks A066207.

Programs

  • Mathematica
    z = 40; p[n_] := p[n] = IntegerPartitions[n]; f[t_] := f[t] = Length[t]
    t1 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] < n &]], {n, z}] (* A239259 *)
    t2 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] <= n &]], {n, z}] (* A239260 *)
    t3 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] == n &]], {n, z}] (* A239261 *)
    t4 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] > n &]], {n, z}] (* A239262 *)
    t5 = Table[f[Select[p[n], 2 Total[Select[#, OddQ]] >= n &]], {n, z}] (* A239263 *)
    (* Peter J. C. Moses, Mar 12 2014 *)

Formula

A239260(n) + a(n) + A239262(n) = A000041(n).
From David A. Corneth, Oct 25 2023: (Start)
a(4*n) = A000009(2*n) * A000041(n) for n >= 0.
a(4*n + r) = 0 for n >= 0 and r in {1, 2, 3}. (End)

Extensions

More terms from Alois P. Heinz, Mar 15 2014

A365067 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n whose odd parts sum to k, for k ranging from mod(n,2) to n in steps of 2.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 3, 3, 2, 2, 4, 3, 4, 3, 5, 5, 3, 4, 4, 6, 5, 6, 6, 5, 8, 7, 5, 6, 8, 6, 10, 7, 10, 9, 10, 8, 12, 11, 7, 10, 12, 12, 10, 15, 11, 14, 15, 15, 16, 12, 18, 15, 11, 14, 20, 18, 20, 15, 22, 15, 22, 21, 25, 24, 24, 18, 27
Offset: 0

Views

Author

Gus Wiseman, Oct 16 2023

Keywords

Comments

The version for all k = 0..n is A113685 (including zeros).

Examples

			Triangle begins:
   1
   1
   1  1
   1  2
   2  1  2
   2  2  3
   3  2  2  4
   3  4  3  5
   5  3  4  4  6
   5  6  6  5  8
   7  5  6  8  6 10
   7 10  9 10  8 12
  11  7 10 12 12 10 15
  11 14 15 15 16 12 18
  15 11 14 20 18 20 15 22
  15 22 21 25 24 24 18 27
Row n = 8 counts the following partitions:
  (8)     (611)    (431)     (521)      (71)
  (62)    (4211)   (41111)   (332)      (53)
  (44)    (22211)  (3221)    (32111)    (5111)
  (422)            (221111)  (2111111)  (3311)
  (2222)                                (311111)
                                        (11111111)
Row n = 9 counts the following partitions:
  (81)     (63)      (54)       (72)        (9)
  (621)    (6111)    (522)      (5211)      (711)
  (441)    (432)     (4311)     (3321)      (531)
  (4221)   (42111)   (411111)   (321111)    (51111)
  (22221)  (3222)    (32211)    (21111111)  (333)
           (222111)  (2211111)              (33111)
                                            (3111111)
                                            (111111111)
		

Crossrefs

Row sums are A000041.
The version including all k is A113685, even version A113686.
Column k = 1 is A119620.
The even version and the reverse version are both A174713.
For odd-indexed instead of odd parts we have A346697, even version A346698.
The corresponding rank statistic is A366528, even version A366531.
A000009 counts partitions into odd parts, ranks A066208.
A086543 counts partitions with odd parts, ranks A366322.
A239261 counts partitions with (sum of odd parts) = (sum of even parts).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Total[Select[#,OddQ]]==k&]],{n,0,15},{k,Mod[n,2],n,2}]

Formula

T(n,k) = A000009(k) * A000041((n-k)/2).

A174713 Triangle read by rows, A173305 (A000009 shifted down twice) * A174712 (diagonalized variant of A000041).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 2, 4, 2, 2, 3, 5, 3, 4, 3, 6, 4, 4, 3, 5, 8, 5, 6, 6, 5, 10, 6, 8, 6, 5, 7, 12, 8, 10, 9, 10, 7, 15, 10, 12, 12, 10, 7, 11, 18, 12, 16, 15, 15, 14, 11, 22, 15, 20, 18, 20, 14, 11, 15
Offset: 0

Views

Author

Gary W. Adamson, Mar 27 2010

Keywords

Comments

Row sums = A000041, the partition numbers.
The current triangle is the 2nd in an infinite set, followed by A174714 (k=3), and A174715, (k=4); in which row sums of each triangle = A000041.
k-th triangle in the infinite set can be defined as having the sequence:
"Euler transform of ones: (1,1,1,...) interleaved with (k-1) zeros"; shifted down k times (except column 0) in successive columns, then multiplied * triangle A174712, the diagonalized variant of A000041, A174713 begins with A000009 shifted down twice (triangle A173305); where A000009 = the Euler transform of period 2 sequence: [1,0,1,0,...].
Similarly, triangle A174714 begins with A000716 shifted down thrice; where A000716 = the Euler transform of period 3 series: [1,1,0,1,1,0,...]. Then multiply the latter as an infinite lower triangular matrix * A174712, the diagonalized variant of A000041, obtaining triangle A174714 with row sums = A000041.
Case k=4 = triangle A174715 which begins with the Euler transform of period 4 series: [1,1,1,0,1,1,1,0,...], shifted down 4 times in successive columns then multiplied * A174712, the diagonalized variant of A000041.
All triangles in the infinite set have row sums = A000041.
The sequences: "Euler transform of ones interleaved with (k-1) zeros" have the following properties, beginning with k=2:
...
k=2, A000009: = Euler transform of [1,0,1,0,1,0,...] and satisfies
.....A000009. = p(x)/p(x^2), where p(x) = polcoeff A000041; and A000041 =
.....A000009(x) = r(x), then p(x) = r(x) * r(x^2) * r(x^4) * r(x^8) * ...
...
k=3, A000726: = Euler transform of [1,1,0,1,1,0,...] and satisfies
.....A000726(x): = p(x)/p(x^3), and given s(x) = polcoeff A000726, we get
.....A000041(x) = p(x) = s(x) * s(x^3) * s(x^9) * s(x^27) * ...
...
k=4, A001935: = Euler transform of [1,1,1,0,1,1,1,0,...] and satisfies
.....A001935(x) = p(x)/p(x^4) and given t(x) = polcoeff A001935, we get
.....A000041(x) = p(x) = t(x) * t(x^4) * t(x^16) * t(x^64) * ...
...
Also the number of integer partitions of n whose even parts sum to k, for k an even number from zero to n. The version including odd k is A113686. - Gus Wiseman, Oct 23 2023

Examples

			First few rows of the triangle =
1;
1;
1, 1;
2, 1;
2, 1, 2;
3, 2, 2;
4, 2, 2, 3;
5, 3, 4, 3;
6, 4, 4, 3, 5;
8, 5, 6, 6, 5;
10, 6, 8, 6, 5, 7;
12, 8, 10, 9, 10, 7;
15, 10, 12, 12, 10, 7, 11;
18, 12, 16, 15, 15, 14, 11;
22, 15, 20, 18, 20, 14, 11, 15;
...
From _Gus Wiseman_, Oct 23 2023: (Start)
Row n = 9 counts the following partitions:
  (9)          (72)        (54)       (63)      (81)
  (711)        (5211)      (522)      (6111)    (621)
  (531)        (3321)      (4311)     (432)     (441)
  (51111)      (321111)    (411111)   (42111)   (4221)
  (333)        (21111111)  (32211)    (3222)    (22221)
  (33111)                  (2211111)  (222111)
  (3111111)
  (111111111)
(End)
		

Crossrefs

Row sums are A000041.
The odd version is A365067.
The corresponding rank statistic is A366531, odd version A366528.
A000009 counts partitions into odd parts, ranks A066208.
A113685 counts partitions by sum of odd parts, even version A113686.
A239261 counts partitions with (sum of odd parts) = (sum of even parts).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Total[Select[#,EvenQ]]==k&]],{n,0,15},{k,0,n,2}] (* Gus Wiseman, Oct 23 2023 *)

Formula

As infinite lower triangular matrices, A173305 * A174712.
T(n,k) = A000009(n-2k) * A000041(k). - Gus Wiseman, Oct 23 2023

A366531 Sum of even prime indices of n.

Original entry on oeis.org

0, 0, 2, 0, 0, 2, 4, 0, 4, 0, 0, 2, 6, 4, 2, 0, 0, 4, 8, 0, 6, 0, 0, 2, 0, 6, 6, 4, 10, 2, 0, 0, 2, 0, 4, 4, 12, 8, 8, 0, 0, 6, 14, 0, 4, 0, 0, 2, 8, 0, 2, 6, 16, 6, 0, 4, 10, 10, 0, 2, 18, 0, 8, 0, 6, 2, 0, 0, 2, 4, 20, 4, 0, 12, 2, 8, 4, 8, 22, 0, 8, 0, 0, 6
Offset: 1

Views

Author

Gus Wiseman, Oct 22 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 198 are {1,2,2,5}, so a(198) = 2+2 = 4.
		

Crossrefs

Zeros are A066208, counted by A000009.
The triangle for the odd version is A113685, without zeros A365067.
The triangle for this statistic is A113686, without zeros A174713.
The odd version is A366528.
The halved version is A366533.
A066207 lists numbers with all even prime indices, counted by A035363.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A239261 counts partitions with sum of odd parts = sum of even parts.
A257991 counts odd prime indices, even A257992.
A346697 adds up odd-indexed prime indices, even-indexed A346698.
A366322 lists numbers with not all prime indices even, counted by A086543.

Programs

  • Mathematica
    Table[Total[Cases[FactorInteger[n], {p_?(EvenQ@*PrimePi),k_}:>PrimePi[p]*k]],{n,100}]

Formula

a(n) = A056239(n) - A366528(n).

A366533 Sum of even prime indices of n divided by 2.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 2, 0, 2, 0, 0, 1, 3, 2, 1, 0, 0, 2, 4, 0, 3, 0, 0, 1, 0, 3, 3, 2, 5, 1, 0, 0, 1, 0, 2, 2, 6, 4, 4, 0, 0, 3, 7, 0, 2, 0, 0, 1, 4, 0, 1, 3, 8, 3, 0, 2, 5, 5, 0, 1, 9, 0, 4, 0, 3, 1, 0, 0, 1, 2, 10, 2, 0, 6, 1, 4, 2, 4, 11, 0, 4, 0, 0, 3, 0, 7
Offset: 1

Views

Author

Gus Wiseman, Oct 23 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 198 are {1,2,2,5}, so a(198) = (2+2)/2 = 2.
		

Crossrefs

Zeros are A066208, counted by A000009.
The triangle for this statistic (without zeros) is A174713.
The un-halved odd version is A366528.
The un-halved version is A366531.
A066207 lists numbers with all even prime indices, counted by A035363.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A113685 counts partitions by sum of odd parts, even version A113686.
A239261 counts partitions with (sum of odd parts) = (sum of even parts).
A257991 counts odd prime indices, even A257992.
A346697 adds up odd-indexed prime indices, even-indexed A346698.
A365067 counts partitions by sum of odd parts (without zeros).
A366322 lists numbers with not all prime indices even, counted by A086543.

Programs

  • Maple
    f:= proc(n) local F,t;
      F:= map(t -> [numtheory:-Pi(t[1]),t[2]], ifactors(n)[2]);
      add(`if`(t[1]::even, t[1]*t[2]/2, 0), t=F)
    end proc:
    map(f, [$1..100]); # Robert Israel, Nov 22 2023
  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Total[Select[prix[n],EvenQ]]/2,{n,100}]

Formula

a(n) = A366531(n)/2.

A019507 Droll numbers: numbers > 1 whose sum of even prime factors equals the sum of odd prime factors.

Original entry on oeis.org

72, 240, 672, 800, 2240, 4224, 5184, 6272, 9984, 14080, 17280, 33280, 39424, 48384, 52224, 57600, 93184, 116736, 161280, 174080, 192000, 247808, 304128, 373248, 389120, 451584, 487424, 537600, 565248, 585728, 640000, 718848, 1013760, 1089536, 1244160, 1384448
Offset: 1

Views

Author

Mario Velucchi (mathchess(AT)velucchi.it)

Keywords

Examples

			6272 = 2*2*2*2*2*2*2*7*7 is droll since 2+2+2+2+2+2+2 = 14 = 7+7.
		

Crossrefs

For count instead of sum we have A072978.
Partitions of this type are counted by A239261, without zero terms A249914.
For prime indices instead of factors we have A366748, zeros of A366749.
The LHS is A366839 with alternating zeros, for indices A366531, triangle A113686.
The RHS is A366840, for indices A366528, triangle A113685.
A000009 counts partitions into odd parts, ranks A066208.
A035363 counts partitions into even parts, ranks A066207.
A112798 lists prime indices, length A001222, sum A056239.
A257991 counts odd prime indices, even A257992.
A300061 lists numbers with even sum of prime indices, odd A300063.

Programs

  • Maple
    f:= proc(k, m) # numbers whose sum of prime factors >= m is k; m is prime
       local S,p,j;
       option remember;
       if k = 0 then return [1]
       elif m > k then return []
       fi;
       S:= NULL:
       p:= nextprime(m);
       for j from k by -m to 0 do
         S:= S, op(map(`*`,  procname(j,p) , m^((k-j)/m)))
       od;
       [S]
    end proc:
    g:= proc(N) local m,R;
      R:= NULL;
      for m from 1 while 2^m < N do
       R:= R, op(map(`*`,select(`<=`,f(2*m,3), N/2^m),2^m));
      od;
      sort([R])
    end proc:
    g(10^8); # Robert Israel, Feb 20 2025
  • Mathematica
    Select[Range[2, 2*10^6, 2], First[#] == Total[Rest[#]] & [Times @@@ FactorInteger[#]] &] (* Paolo Xausa, Feb 19 2025 *)
  • PARI
    isok(n) = {if (n % 2, return (0)); f = factor(n); return (2*f[1,2] == sum(i=2, #f~, f[i,1]*f[i,2]));} \\ Michel Marcus, Jun 21 2013

Formula

These are even numbers k such that A366839(k/2) = A366840(k). - Gus Wiseman, Oct 25 2023 (corrected Feb 19 2025)

Extensions

Name edited by Paolo Xausa, Feb 19 2025

A066966 Total sum of even parts in all partitions of n.

Original entry on oeis.org

0, 2, 2, 10, 12, 30, 40, 82, 110, 190, 260, 422, 570, 860, 1160, 1690, 2252, 3170, 4190, 5760, 7540, 10142, 13164, 17450, 22442, 29300, 37410, 48282, 61170, 78132, 98310, 124444, 155582, 195310, 242722, 302570, 373882, 462954, 569130, 700570, 856970
Offset: 1

Views

Author

Vladeta Jovovic, Jan 26 2002

Keywords

Comments

Partial sums of A206436. - Omar E. Pol, Mar 17 2012
From Omar E. Pol, Apr 02 2023: (Start)
Convolution of A000041 and A146076.
Convolution of A002865 and A271342.
a(n) is also the sum of all even divisors of all positive integers in a sequence with n blocks where the m-th block consists of A000041(n-m) copies of m, with 1 <= m <= n. The mentioned even divisors are also all even parts of all partitions of n. (End)

Examples

			a(4) = 10 because in the partitions of 4, namely [4],[3,1],[2,2],[2,1,1],[1,1,1,1], the total sum of the even parts is 4+2+2+2 = 10.
		

Crossrefs

Programs

  • Maple
    g:=sum(2*j*x^(2*j)/(1-x^(2*j)),j=1..55)/product(1-x^j,j=1..55): gser:=series(g,x=0,45): seq(coeff(gser,x^n),n=1..41);
    # Emeric Deutsch, Feb 20 2006
    b:= proc(n, i) option remember; local f, g;
          if n=0 or i=1 then [1, 0]
        else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));
             [f[1]+g[1], f[2]+g[2]+ ((i+1) mod 2)*g[1]*i]
          fi
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=1..50);
    # Alois P. Heinz, Mar 22 2012
  • Mathematica
    max = 50; g = Sum[2*j*x^(2*j)/(1 - x^(2*j)), {j, 1, max}]/Product[1 - x^j, {j, 1, max}]; gser = Series[g, {x, 0, max}]; a[n_] := SeriesCoefficient[gser, {x, 0, n}]; Table[a[n], {n, 1, max - 1}] (* Jean-François Alcover, Jan 24 2014, after Emeric Deutsch *)
    Map[Total[Select[Flatten[IntegerPartitions[#]], EvenQ]] &, Range[30]] (* Peter J. C. Moses, Mar 14 2014 *)
  • PARI
    a(n) = 2*sum(k=1, floor(n/2), sigma(k)*numbpart(n-2*k) ); \\ Joerg Arndt, Jan 24 2014

Formula

a(n) = 2*Sum_{k=1..floor(n/2)} sigma(k)*numbpart(n-2*k).
a(n) = Sum_{k=0..n} k*A113686(n,k). - Emeric Deutsch, Feb 20 2006
G.f.: Sum_{j>=1} (2jx^(2j)/(1-x^(2j)))/Product_{j>=1}(1-x^j). - Emeric Deutsch, Feb 20 2006
a(n) = A066186(n) - A066967(n). - Omar E. Pol, Mar 10 2012
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*sqrt(3)). - Vaclav Kotesovec, May 29 2018

Extensions

More terms from Naohiro Nomoto and Sascha Kurz, Feb 07 2002
More terms from Emeric Deutsch, Feb 20 2006

A366749 Self-signed alternating sum of the prime indices of n.

Original entry on oeis.org

0, -1, 2, -2, -3, 1, 4, -3, 4, -4, -5, 0, 6, 3, -1, -4, -7, 3, 8, -5, 6, -6, -9, -1, -6, 5, 6, 2, 10, -2, -11, -5, -3, -8, 1, 2, 12, 7, 8, -6, -13, 5, 14, -7, 1, -10, -15, -2, 8, -7, -5, 4, 16, 5, -8, 1, 10, 9, -17, -3, 18, -12, 8, -6, 3, -4, -19, -9, -7, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 23 2023

Keywords

Comments

We define the self-signed alternating sum of a multiset y to be Sum_{k in y} k*(-1)^k.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Crossrefs

With summands of 2^(n-1) we get A048675.
With summands of (-1)^k we get A195017.
The version for alternating prime indices is A346697 - A346698 = A316524.
Positions of zeros are A366748, counted by A239261.
A112798 lists prime indices, length A001222, sum A056239, reverse A296150.
A300061 lists numbers with even sum of prime indices, odd A300063.
A366528 adds up odd prime indices, counted by A113685.
A366531 adds up even prime indices, counted by A113686.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    asum[y_]:=Sum[x*(-1)^x,{x,y}];
    Table[asum[prix[n]],{n,100}]

Formula

a(n) = Sum_{k in A112798(n)} k*(-1)^k.
a(n) = A366531(n) - A366528(n).
Showing 1-10 of 19 results. Next