cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A115186 Smallest number m such that m and m+1 have exactly n prime factors (counted with multiplicity).

Original entry on oeis.org

2, 9, 27, 135, 944, 5264, 29888, 50624, 203391, 3290624, 6082047, 32535999, 326481920, 3274208000, 6929459199, 72523096064, 37694578688, 471672487935, 11557226700800, 54386217385983, 50624737509375, 275892612890624, 4870020829413375, 68091093855502335, 2280241934368767, 809386931759611904, 519017301463269375
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 16 2006

Keywords

Comments

A001222(a(n)) = A001222(a(n)+1) = n: subsequence of A045920.
a(16) > 4*10^10. - Martin Fuller, Jan 17 2006
a(n) <= A093548(n) <= A052215(n). - Zak Seidov, Jan 16 2015
Apparently, 4*a(n)+2 is the least number k such that k-2 and k+2 have exactly n+2 prime factors, counted with multiplicity. - Hugo Pfoertner, Apr 02 2024

Examples

			a(10) = 3290624 = 6427 * 2^9, 3290624+1 = 13 * 5^5 * 3^4:
A001222(3290624) = A001222(3290625) = 10.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 135, p. 46, Ellipses, Paris 2008.

Crossrefs

Equivalent sequences for longer runs: A113752 (3), A356893 (4).

Programs

  • Maple
    f:= proc(n) uses priqueue; local t,x,p,i;
        initialize(pq);
        insert([-3^n, 3$n], pq);
        do
          t:= extract(pq);
          x:= -t[1];
          if numtheory:-bigomega(x-1)=n then return x-1
          elif numtheory:-bigomega(x+1)=n then return x
          fi;
          p:= nextprime(t[-1]);
          for i from n+1 to 2 by -1 while t[i] = t[-1] do
            insert([t[1]*(p/t[-1])^(n+2-i), op(t[2..i-1]), p$(n+2-i)], pq)
          od;
        od
    end proc:
    seq(f(i),i=1..27); # Robert Israel, Sep 30 2024

Extensions

a(13)-a(15) from Martin Fuller, Jan 17 2006
a(16)-a(17) from Donovan Johnson, Apr 08 2008
a(18)-a(22) from Donovan Johnson, Jan 21 2009
a(23)-a(25) from Donovan Johnson, May 25 2013
a(26)-a(27) from Robert Israel, Sep 30 2024

A356893 a(n) is the smallest number m such that m, m+1, m+2 and m+3 each have exactly n prime factors (counted with multiplicity).

Original entry on oeis.org

602, 4023, 57967, 8706123, 296299374, 4109290623, 1691788490622, 59004826709373
Offset: 3

Views

Author

Zak Seidov, Sep 03 2022

Keywords

Comments

a(9) <= 1691788490622, a(10) <= 198629571578750, a(11) <= 3650742165781248. - David A. Corneth, Sep 04 2022
a(11) > 2 * 10^15. - Toshitaka Suzuki, Aug 31 2025

Examples

			4023 = 3^3*149, 4024 = 2^3*503, 4025=5^2*7*23, 4026=2*3*11*61 (all products of four prime factors).
		

Crossrefs

Cf. A113752.

Extensions

a(9)-a(10) from Toshitaka Suzuki, Aug 31 2025

A356855 a(n) is the least number m such that u defined by u(i) = bigomega(m + 2i) satisfies u(i) = u(0) for 0 <= i < n and u(n) != u(0), or -1 if no such number exists.

Original entry on oeis.org

1, 4, 3, 215, 213, 1383, 3091, 8129, 151403, 151401, 2560187, 33396293, 33396291, 56735777, 1156217487, 2514196079
Offset: 1

Views

Author

Jean-Marc Rebert, Sep 04 2022

Keywords

Examples

			Let u be defined by u(i) = bigomega(3 + 2i). u(i) = 1 for 0 <= i < 3 and u(3) = 2 != 1, and 3 is the smallest such number, hence a(3) = 3.
Let u be defined by u(i) = bigomega(4 + 2i). u(i) = 2 for 0 <= i < 2 and u(3) = 3 != 2 , and 4 is the smallest such number, hence a(2) = 4.
Let u be defined by u(i) = bigomega(151403 + 2i). u(i) = 3 for 0 <= i < 9 and u(9) = 2 != 3, and 151403 is the smallest such number, hence a(9) = 151403.
		

Crossrefs

Cf. A073093 and A091304 (the 2 bisections of A001222).

Programs

  • PARI
    u(m,i)=bigomega(m+2*i)
    card(m)=my(k=u(m,0),c=0);while(u(m,c)==k,c++);c
    a(n)=my(c=0);for(m=1,+oo,c=card(m);if(c==n,return(m)))

A356953 Least nonzero starting number in the first run of exactly n consecutive numbers having the same number of prime factors counted with multiplicity, or -1 if no such number exists.

Original entry on oeis.org

1, 2, 33, 1083, 602, 2522, 211673, 6612470, 3405122, 49799889, 202536181, 3195380868, 5208143601, 85843948321, 97524222465, 361385490681003, 441826936079342
Offset: 1

Views

Author

Jean-Marc Rebert, Sep 06 2022

Keywords

Comments

In the definition, "exactly" means the run is not part of a longer run.
a(18) > 2 * 10^15. - Toshitaka Suzuki, Aug 31 2025

Examples

			2 and 3 are 2 consecutive numbers and have the same number of prime factors, and 2 is the smallest such number, hence a(2) = 2.
		

Crossrefs

Programs

  • PARI
    card(m)=my(c=0,k=bigomega(m));if(bigomega(m-1)!=k,while(bigomega(m)==k,c++;m++));c
    a(n)=if(n==1,return(1));for(m=2,+oo,if(card(m)==n,return(m)))

Extensions

a(16)-a(17) from Toshitaka Suzuki, Aug 31 2025

A334583 Numbers m such that m, m + 1 and m + 2 each have exactly eight prime factors, not necessarily distinct.

Original entry on oeis.org

40909374, 71410624, 87278750, 126237375, 152439488, 161590624, 166450624, 209140623, 227929624, 243409374, 267308990, 267639470, 290696768, 291513248, 292088510, 295644734, 307885374, 310314158, 319874750, 321890750, 331690624, 336958622, 343030624, 352749248, 354109374, 356269374, 366681248, 391390623, 401375168, 407590623
Offset: 1

Views

Author

Zak Seidov, May 06 2020

Keywords

Examples

			40909374 = 2 * 3^4 * 11^2 * 2087, 40909375 = 5^5 * 13 * 19 * 53, and 40909376 = 2^6 * 179 * 3571.
		

Crossrefs

Intersection of A045939 and A046310.

Programs

  • PARI
    list(lim)=my(v=List(), k, o); forfactored(n=40909374, lim\1+2, o=bigomega(n); if(o==8, if(k++>2, listput(v, n[1]-2)), k=0)); Vec(v) \\ Charles R Greathouse IV, May 07 2020

Formula

A001222(a(n)+i) = 8 for i in {0,1,2}.

A374392 a(n) is the least number k such that k, k + 2 and k + 4 all have exactly n prime factors, counted with multiplicity.

Original entry on oeis.org

3, 91, 66, 340, 2548, 30940, 67228, 6290620, 81818748, 1336727934, 19729482496, 358398854656, 1934923637500, 115877891562496
Offset: 1

Views

Author

Zak Seidov and Robert Israel, Jul 07 2024

Keywords

Comments

For n >= 3, a(n) <= 2 * A113752(n-1), with equality when a(n) is even.
a(15) <= 2495158931562496. - Martin Ehrenstein, Jul 11 2024

Examples

			a(3) = 66 because 66 = 2 * 3 * 11, 68 = 2^2 * 17 and 70 = 2 * 5 * 7 all have 3 prime factors, counted with multiplicity, and 66 is the least number that works.
		

Crossrefs

Programs

  • Maple
    f:= proc(m) uses priqueue;
    local S, pq, T, v, TP, q, p, j;
      S:= {-10,-9,-8,-7};
    initialize(pq);
    insert([-2^m,2$m],pq);
    do
      T:= extract(pq); v:= -T[1];
      if {v-2,v-4} subset S then return v-4 fi;
      S:= (S minus {min(S)}) union {v};
      q:= T[-1];
      p:= nextprime(q);
      for j from m+1 to 2 by -1 do
          if T[j] <> q then break fi;
        TP:= [T[1]*(p/q)^(m+2-j),op(T[2..j-1]),p$(m+2-j)];
          insert(TP, pq)
    od od;
    end proc:
    map(f, [$1..11]);

Extensions

a(12)-a(14) from Martin Ehrenstein, Jul 11 2024

A374449 Triangle read by rows: T(m,k) is the first number that starts a sequence of exactly k consecutive numbers with m prime factors, counted with multiplicity, if such a sequence is possible.

Original entry on oeis.org

5, 2, 4, 9, 33, 8, 27, 170, 1083, 602, 2522, 211673, 16, 135, 1274, 4023, 12122, 204323, 355923, 6612470, 3405122, 49799889, 202536181, 3195380868, 5208143601
Offset: 1

Views

Author

Robert Israel, Jul 08 2024

Keywords

Comments

For m > 1, row m can have at most 2^m - 1 terms, because one out of every 2^m consecutive numbers is divisible by 2^m.
T(4,15) = A117969(4) = 97524222465.

Examples

			Triangle starts
  5 2
  4 9 33
  8 27 170 1083 603 3533 211673
T(3,2) = 27 because 27 = 3^3 and 28 = 2^2 * 7 each have 3 prime factors (counted with multiplicity) while 26 = 2*13 and 29 (prime) do not.
		

Crossrefs

Cf. A000079 (first column except for row 1), A115186, A113752, A117969 (last term in each row).

Programs

  • Maple
    f:= proc(n)
    uses priqueue;
    local V,L, count, T, v, j, q, p, TP;
    V:= Vector(2^n-1); count:= 0;
    L:= [(-1)$(2^n),2^n];
    initialize(pq);
    insert([-2^(n),2$n],pq);
    while count < 2^n-1 do
      T:= extract(pq); v:= -T[1];
      if L[-1] <> v-1 then
        for j from 1 while L[-1]-L[-j] = j-1 do
           if L[-j]-L[-j-1] <> 1 and V[j] = 0 then
             V[j]:= L[-j]; count:= count+1;
      fi od fi;
      L:= [op(L[2..-1]),v];
      q:= T[-1];
      p:= nextprime(q);
      for j from n+1 to 2 by -1 do
        if T[j] <> q then break fi;
        TP:= [T[1]*(p/q)^(n+2-j), op(T[2..j-1]), p$(n+2-j)];
        insert(TP,pq);
    od od;
    op(convert(V,list));
    end proc:
    f(1):= 5,2:
    seq(f(i),i=1..3);

Formula

T(m,1) = 2^m for m >= 2.
Showing 1-7 of 7 results.