cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A116496 Numbers k such that difference between k-th prime and next prime is 100.

Original entry on oeis.org

33608, 66762, 100978, 124508, 125049, 172619, 202315, 233905, 256422, 286306, 306691, 320569, 326694, 334412, 362134, 374275, 382591, 395155, 414640, 428335, 440270, 467181, 493060, 511698, 518536, 555912, 561795, 567479, 590434, 592581
Offset: 1

Views

Author

Zak Seidov, Feb 18 2006

Keywords

Examples

			p(33609) - p(33608) = 396833 - 396733 = 100.
		

Crossrefs

Programs

  • Mathematica
    PrimePi/@Transpose[Select[Partition[Prime[Range[600000]],2,1],#[[2]]-#[[1]] == 100&]][[1]] (* Harvey P. Dale, Sep 22 2013 *)
  • PARI
    lista(nn) = {my(i=0, q=2); forprime(p=3, nn, i++; if(p-q==100, print1(i, ", ")); q=p); } \\ Jinyuan Wang, Jan 29 2020

Formula

A050434(n) = prime(a(n)). - R. J. Mathar, Apr 30 2024

A116493 Numbers k such that the difference between k-th prime and next prime is 70.

Original entry on oeis.org

15783, 15927, 16879, 18266, 19466, 22292, 26186, 33806, 37668, 38333, 38432, 42892, 43407, 45053, 52934, 54738, 54854, 56812, 57314, 58394, 61165, 72298, 79627, 80258, 81214, 83711, 83730, 83886, 89236, 92187, 92609, 94910, 95317, 95807, 98103, 100205, 106516
Offset: 1

Views

Author

Zak Seidov, Feb 17 2006

Keywords

Examples

			p(15784) - p(15783) = 173429 - 173359 = 70.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[95317],NextPrime[Prime[#]]-Prime[#]==70&] (* James C. McMahon, Aug 20 2024 *)
  • PARI
    lista(nn) = {pr = primes(nn); for (n = 1, nn-1, if (pr[n+1] - pr[n] == 70, print1(n, ", ")););} \\ Michel Marcus, Oct 09 2013

Formula

A204792(n) = prime(a(n)). - R. J. Mathar, Apr 30 2024

Extensions

Name edited by James C. McMahon, Aug 20 2024

A116495 Numbers k such that difference between k-th prime and next prime is 210.

Original entry on oeis.org

1319945, 5240989, 9223725, 9359659, 12606992, 13798935, 16163072, 17559961, 18805047, 18973547, 20278475, 22091310, 22358431, 24253281, 25377875, 26813808, 28784698, 29308594, 29819740, 29867343, 30573917, 30838655
Offset: 1

Views

Author

Zak Seidov, Feb 18 2006

Keywords

Examples

			p(1319946) - p(1319945) = 20831533 - 20831323 = 210.
		

Crossrefs

Programs

  • PARI
    lista(nn) = {my(i=0, q=2); forprime(p=3, nn, i++; if(p-q==210, print1(i, ", ")); q=p); } \\ Jinyuan Wang, Jan 29 2020

A174349 Square array: row n gives the indices i for which prime(i+1) = prime(i) + 2n; read by falling antidiagonals.

Original entry on oeis.org

2, 3, 4, 5, 6, 9, 7, 8, 11, 24, 10, 12, 15, 72, 34, 13, 14, 16, 77, 42, 46, 17, 19, 18, 79, 53, 47, 30, 20, 22, 21, 87, 61, 91, 62, 282, 26, 25, 23, 92, 68, 97, 66, 295, 99, 28, 27, 32, 94, 80, 114, 137, 319, 180, 154, 33, 29, 36, 124, 82, 121, 146, 331, 205, 259, 189
Offset: 1

Views

Author

Clark Kimberling, Mar 16 2010

Keywords

Comments

It is conjectured that every positive integer except 1 occurs in the array.
From M. F. Hasler, Oct 19 2018: (Start)
The above conjecture is obviously true: the integer i appears in row (prime(i+1) - prime(i))/2.
Polignac's Conjecture states that all rows are of infinite length.
To ensure the sequence is well-defined in case the conjecture would not hold, we can use the convention that finite rows are continued by 0's. (End)

Examples

			Corner of the array:
   2    3    5    7    10    13 ...
   4    6    8   12    14    17 ...
   9   11   15   16    18    21 ...
  24   72   77   79    87    92 ...
  34   42   53   61    68    80 ...
  46   47   91   97   114   121 ...
  (...)
Row 1: p(2) = 3, p(3) = 5, p(5) = 11, p(7) = 17, ..., these being the primes for which the next prime is 2 greater, cf. A029707.
Row 2: p(4) = 7, p(6) = 13, p(8) = 19, ..., these being the primes for which the next prime is 4 greater, cf. A029709.
		

Crossrefs

Rows 1, 2, 3, ... are A029707, A029709, A320701, ..., A320720; A116493 (row 35), A116496 (row 50), A116497 (row 100), A116495 (row 105).
Column 1 is A038664.

Programs

  • Mathematica
    rows = 10; t2 = {}; Do[t = {}; p = Prime[2]; While[Length[t] < rows - off + 1, nextP = NextPrime[p]; If[nextP - p == 2*off, AppendTo[t, p]]; p = nextP]; AppendTo[t2, t], {off, rows}]; t3 = Table[t2[[b, a - b + 1]], {a, rows}, {b, a}]; PrimePi /@ t3 (* T. D. Noe, Feb 11 2014 *)

Formula

a(n) = A000720(A174350(n)). - Michel Marcus, Mar 30 2016

Extensions

Name corrected and other edits by M. F. Hasler, Oct 19 2018

A320701 Indices of primes followed by a gap (distance to next larger prime) of 6.

Original entry on oeis.org

9, 11, 15, 16, 18, 21, 23, 32, 36, 37, 39, 40, 51, 54, 55, 56, 58, 67, 71, 73, 74, 76, 84, 86, 96, 100, 102, 103, 105, 107, 108, 110, 111, 118, 119, 123, 129, 130, 133, 160, 161, 164, 165, 167, 170, 174, 179, 184, 185, 187, 188, 194, 195, 199, 200, 202, 208, 210, 216, 218, 219, 227, 231
Offset: 1

Views

Author

M. F. Hasler, Oct 19 2018

Keywords

Comments

Indices of the primes given in A031924.
Subsequence of indices of sexy primes A023201.

Crossrefs

Equals A000720 o A031924.
Row 3 of A174349.
Indices of 6's in A001223.
Cf. A029707, A029709, A320702, A320703, ..., A320720 (analog for gaps 2, 4, 8, 10, ..., 44), A116493 (gap 70), A116496 (gap 100), A116497 (gap 200), A116495 (gap 210).

Programs

  • Mathematica
    Position[Differences[Prime[Range[250]]],6]//Flatten (* Harvey P. Dale, Oct 13 2022 *)
  • PARI
    A(N=100,g=6,p=2,i=primepi(p)-1,L=List())={forprime(q=1+p,,i++; if(p+g==p=q, listput(L,i); N--||break));Vec(L)} \\ returns the list of first N terms of the sequence

Formula

a(n) = A000720(A031924(n)).
A320701 = { i > 0 | prime(i+1) = prime(i) + 6 } = A001223^(-1)({6}).

A320702 Indices of primes followed by a gap (distance to next larger prime) of 8.

Original entry on oeis.org

24, 72, 77, 79, 87, 92, 94, 124, 126, 128, 132, 135, 156, 158, 166, 186, 192, 196, 220, 228, 241, 246, 248, 270, 281, 299, 304, 325, 330, 334, 338, 364, 370, 379, 386, 393, 400, 413, 417, 421, 432, 436, 454, 456, 482, 488, 507, 517, 519, 538, 589, 594, 620, 640, 661, 676, 689, 691, 712, 736, 750, 759
Offset: 1

Views

Author

M. F. Hasler, Oct 19 2018

Keywords

Comments

Indices of the primes given in A031926.

Crossrefs

Equals A000720 o A031926.
Row 4 of A174349.
Indices of 8's in A001223.
Cf. A029707, A029709, A320701, A320703, ..., A320720 (analog for gaps 2, 4, 6, 10, ..., 44), A116493 (gap 70), A116496 (gap 100), A116497 (gap 200), A116495 (gap 210).

Programs

  • Magma
    [n: n in [1..800] | NthPrime(n+1) - NthPrime(n) eq 8]; // Vincenzo Librandi, Mar 21 2019
  • Maple
    p:= 2: Res:= NULL: count:= 0:
    for n from 1 while count < 100 do
      q:= nextprime(p);
      if q-p = 8 then count:= count+1; Res:= Res, n; fi;
      p:= q;
    od:
    Res; # Robert Israel, Oct 19 2018
  • Mathematica
    Select[Range[800], Prime[#] + 8 == Prime[# + 1] &] (* Vincenzo Librandi, Mar 21 2019 *)
  • PARI
    A_vec(N=100,g=8,p=2,i=primepi(p)-1,L=List())={forprime(q=1+p,,i++; if(p+g==p=q, listput(L,i); N--||break));Vec(L)}
    

Formula

a(n) = A000720(A031926(n)) = A174349(4,n).
A320702 = { i > 0 | prime(i+1) = prime(i) + 8 } = A001223^(-1)({8}).

A320720 Indices of primes followed by a gap (distance to next larger prime) of 44.

Original entry on oeis.org

1831, 3861, 4009, 7499, 8937, 10328, 10427, 11725, 12904, 12926, 13011, 13051, 16596, 16915, 18280, 20055, 20160, 20352, 20619, 21458, 21465, 21550, 21659, 23752, 23934, 24107, 24384, 24445, 24651, 24871, 24933, 24992, 25027, 26089, 26166, 26483, 26923, 27038, 27048, 28898, 29343
Offset: 1

Views

Author

M. F. Hasler, Oct 19 2018

Keywords

Comments

Indices of the primes listed in A134121.

Crossrefs

Cf. A029707, A029709 (analog for gaps 2 and 4), A320701, A320702, ... A320719 (analog for gaps 6, 8, 10, ..., 42), A116493 (gap 70), A116496 (gap 100), A116497 (gap 200), A116495 (gap 210).
Equals A000720 o A134121.
Indices of 44's in A001223.
Row 22 of A174349.

Programs

  • PARI
    A(N=100,g=44,p=2,i=primepi(p)-1,L=List())={forprime(q=1+p,,i++; if(p+g==p=q, listput(L,i); N--||break));Vec(L)} \\ returns the list of first N terms of the sequence

Formula

a(n) = A000720(A134121(n)).

A320703 Indices of primes followed by a gap (distance to next larger prime) of 10.

Original entry on oeis.org

34, 42, 53, 61, 68, 80, 82, 101, 106, 115, 125, 127, 138, 141, 145, 157, 172, 175, 177, 191, 193, 204, 222, 233, 258, 266, 269, 279, 289, 306, 308, 310, 316, 324, 369, 383, 397, 399, 403, 418, 422, 431, 443, 474, 491, 497, 500, 502, 518, 525, 531, 535, 575
Offset: 1

Views

Author

M. F. Hasler, Oct 19 2018

Keywords

Comments

Indices of the primes given in A031928.

Crossrefs

Equals A000720 o A031928.
Row 5 of A174349.
Indices of 10's in A001223.
Subsequence of A107730: prime(n+1) ends in same digit as prime(n).
Cf. A029707, A029709, A320701, A320702, ..., A320720 (analog for gaps 2, 4, 6, 8, ..., 44), A116493 (gap 70), A116496 (gap 100), A116497 (gap 200), A116495 (gap 210).

Programs

Formula

a(n) = A000720(A031928(n)).
A320703 = { i > 0 | prime(i+1) = prime(i) + 10 }.

A204807 Primes followed by a gap of 200 = nextprime(p) - p.

Original entry on oeis.org

378043979, 436402859, 481691513, 496333259, 529811591, 566348087, 587673143, 613621031, 642407387, 707840657, 735533657, 739358843, 751127249, 756470279, 776996897, 782602013, 783476651, 796714157, 803011589, 819905759, 888967283
Offset: 1

Views

Author

M. F. Hasler, Jan 19 2012

Keywords

Comments

All terms == 5 (mod 6). - Zak Seidov, Apr 04 2013

Programs

  • Mathematica
    Select[Partition[Prime[Range[455*10^5]],2,1],#[[2]]-#[[1]]==200&][[All,1]] (* The program may take a long time to run. *) (* Harvey P. Dale, Aug 03 2020 *)
  • PARI
    list_gaps(g=200,f,N=100)={my(p=0); for(c=1, N, while(g+p!=p=nextprime(p+1), ); if(f,write(f".txt",c" ",p-g),print1(", "p-g)))}

Formula

a(n) = A000040(A116497(n)).

A320708 Indices of primes followed by a gap (distance to next larger prime) of 20.

Original entry on oeis.org

154, 259, 442, 480, 548, 753, 777, 783, 876, 971, 1035, 1066, 1095, 1106, 1147, 1254, 1277, 1302, 1337, 1345, 1355, 1381, 1396, 1400, 1423, 1438, 1562, 1592, 1613, 1662, 1669, 1808, 1955, 2016, 2043, 2081, 2116, 2129, 2147, 2226, 2302, 2307, 2387, 2517, 2547, 2563, 2694, 2724, 2745, 2755, 2766
Offset: 1

Views

Author

M. F. Hasler, Oct 19 2018

Keywords

Comments

Indices of the primes listed in A031938.

Crossrefs

Equals A000720 o A031938.
Row 10 of A174349.
Subsequence of A107730 (prime(n+1) ends in same digit as prime(n)).
Indices of 20's in A001223.
Cf. A029707, A029709, A320701, A320702, ..., A320720 (analog for gaps 2, 4, 6, 8, ..., 44), A116493 (gap 70), A116496 (gap 100), A116497 (gap 200), A116495 (gap 210).

Programs

  • Magma
    [n: n in [1..3000] | NthPrime(n+1) - NthPrime(n) eq 20]; // Vincenzo Librandi, Mar 22 2019
  • Mathematica
    Select[Range[3000], Prime[#] + 20 == Prime[# + 1] &] (* Vincenzo Librandi, Mar 22 2019 *)
  • PARI
    A(N=100,g=20,p=2,i=primepi(p)-1,L=List())={forprime(q=1+p,,i++; if(p+g==p=q, listput(L,i); N--||break));Vec(L)} \\ returns the list of first N terms of the sequence
    

Formula

a(n) = A000720(A031938(n)).
A320708 = { i > 0 | prime(i+1) = prime(i) + 20 } = A001223^(-1)({20}).
Showing 1-10 of 25 results. Next