cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A001223 Prime gaps: differences between consecutive primes.

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2, 4, 14, 4, 6, 2, 10, 2, 6, 6, 4, 6, 6, 2, 10, 2, 4, 2, 12, 12, 4, 2, 4, 6, 2, 10, 6, 6, 6, 2, 6, 4, 2, 10, 14, 4, 2, 4, 14, 6, 10, 2, 4, 6, 8, 6, 6, 4, 6, 8, 4, 8, 10, 2, 10, 2, 6, 4, 6, 8, 4, 2, 4, 12, 8, 4, 8, 4, 6, 12
Offset: 1

Views

Author

Keywords

Comments

There is a unique decomposition of the primes: provided the weight A117078(n) is > 0, we have prime(n) = weight * level + gap, or A000040(n) = A117078(n) * A117563(n) + a(n). - Rémi Eismann, Feb 14 2008
Let rho(m) = A179196(m), for any n, let m be an integer such that p_(rho(m)) <= p_n and p_(n+1) <= p_(rho(m+1)), then rho(m) <= n < n + 1 <= rho(m + 1), therefore a(n) = p_(n+1) - p_n <= p_rho(m+1) - p_rho(m) = A182873(m). For all rho(m) = A179196(m), a(rho(m)) < A165959(m). - John W. Nicholson, Dec 14 2011
A solution (modular square root) of x^2 == A001248(n) (mod A000040(n+1)). - L. Edson Jeffery, Oct 01 2014
There exists a constant C such that for n -> infinity, Cramer conjecture a(n) < C log^2 prime(n) is equivalent to (log prime(n+1)/log prime(n))^n < e^C. - Thomas Ordowski, Oct 11 2014
a(n) = A008347(n+1) - A008347(n-1). - Reinhard Zumkeller, Feb 09 2015
Yitang Zhang proved lim inf_{n -> infinity} a(n) is finite. - Robert Israel, Feb 12 2015
lim sup_{n -> infinity} a(n)/log^2 prime(n) = C <==> lim sup_{n -> infinity}(log prime(n+1)/log prime(n))^n = e^C. - Thomas Ordowski, Mar 09 2015
a(A038664(n)) = 2*n and a(m) != 2*n for m < A038664(n). - Reinhard Zumkeller, Aug 23 2015
If j and k are positive integers then there are no two consecutive primes gaps of the form 2+6j and 2+6k (A016933) or 4+6j and 4+6k (A016957). - Andres Cicuttin, Jul 14 2016
Conjecture: For any positive numbers x and y, there is an index k such that x/y = a(k)/a(k+1). - Andres Cicuttin, Sep 23 2018
Conjecture: For any three positive numbers x, y and j, there is an index k such that x/y = a(k)/a(k+j). - Andres Cicuttin, Sep 29 2018
Conjecture: For any three positive numbers x, y and j, there are infinitely many indices k such that x/y = a(k)/a(k+j). - Andres Cicuttin, Sep 29 2018
Row m of A174349 lists all indices n for which a(n) = 2m. - M. F. Hasler, Oct 26 2018
Since (6a, 6b) is an admissible pattern of gaps for any integers a, b > 0 (and also if other multiples of 6 are inserted in between), the above conjecture follows from the prime k-tuple conjecture which states that any admissible pattern occurs infinitely often (see, e.g., the Caldwell link). This also means that any subsequence a(n .. n+m) with n > 2 (as to exclude the untypical primes 2 and 3) should occur infinitely many times at other starting points n'. - M. F. Hasler, Oct 26 2018
Conjecture: Defining b(n,j,k) as the number of pairs of prime gaps {a(i),a(i+j)} such that i < n, j > 0, and a(i)/a(i+j) = k with k > 0, then
lim_{n -> oo} b(n,j,k)/b(n,j,1/k) = 1, for any j > 0 and k > 0, and
lim_{n -> oo} b(n,j,k1)/b(n,j,k2) = C with C = C(j,k1,k2) > 0. - Andres Cicuttin, Sep 01 2019

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • GCHQ, The GCHQ Puzzle Book, Penguin, 2016. See page 92.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 186-192.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000040 (primes), A001248 (primes squared), A000720, A037201, A007921, A030173, A036263-A036274, A167770, A008347.
Second difference is A036263, first occurrence is A000230.
For records see A005250, A005669.
Sequences related to the differences between successive primes: A001223 (Delta(p)), A028334, A080378, A104120, A330556-A330561.

Programs

  • Haskell
    a001223 n = a001223_list !! (n-1)
    a001223_list = zipWith (-) (tail a000040_list) a000040_list
    -- Reinhard Zumkeller, Oct 29 2011
    
  • Magma
    [(NthPrime(n+1) - NthPrime(n)): n in [1..100]]; // Vincenzo Librandi, Apr 02 2011
    
  • Maple
    with(numtheory): for n from 1 to 500 do printf(`%d,`,ithprime(n+1) - ithprime(n)) od:
  • Mathematica
    Differences[Prime[Range[100]]] (* Harvey P. Dale, May 15 2011 *)
  • PARI
    diff(v)=vector(#v-1,i,v[i+1]-v[i]);
    diff(primes(100)) \\ Charles R Greathouse IV, Feb 11 2011
    
  • PARI
    forprime(p=1, 1e3, print1(nextprime(p+1)-p, ", ")) \\ Felix Fröhlich, Sep 06 2014
    
  • Python
    from sympy import prime
    def A001223(n): return prime(n+1)-prime(n) # Chai Wah Wu, Jul 07 2022
  • Sage
    differences(prime_range(1000)) # Joerg Arndt, May 15 2011
    

Formula

G.f.: b(x)*(1-x), where b(x) is the g.f. for the primes. - Franklin T. Adams-Watters, Jun 15 2006
a(n) = prime(n+1) - prime(n). - Franklin T. Adams-Watters, Mar 31 2010
Conjectures: (i) a(n) = ceiling(prime(n)*log(prime(n+1)/prime(n))). (ii) a(n) = floor(prime(n+1)*log(prime(n+1)/prime(n))). (iii) a(n) = floor((prime(n)+prime(n+1))*log(prime(n+1)/prime(n))/2). - Thomas Ordowski, Mar 21 2013
A167770(n) == a(n)^2 (mod A000040(n+1)). - L. Edson Jeffery, Oct 01 2014
a(n) = Sum_{k=1..2^(n+1)-1} (floor(cos^2(Pi*(n+1)^(1/(n+1))/(1+primepi(k))^(1/(n+1))))). - Anthony Browne, May 11 2016
G.f.: (Sum_{k>=1} x^pi(k)) - 1, where pi(k) is the prime counting function. - Benedict W. J. Irwin, Jun 13 2016
Conjecture: Limit_{N->oo} (Sum_{n=2..N} log(a(n))) / (Sum_{n=2..N} log(log(prime(n)))) = 1. - Alain Rocchelli, Dec 16 2022
Conjecture: The asymptotic limit of the average of log(a(n)) ~ log(log(prime(n))) - gamma (where gamma is Euler's constant). Also, for n tending to infinity, the geometric mean of a(n) is equivalent to log(prime(n)) / e^gamma. - Alain Rocchelli, Jan 23 2023
It has been conjectured that primes are distributed around their average spacing in a Poisson distribution (cf. D. A. Goldston in above links). This is the basis of the last two conjectures above. - Alain Rocchelli, Feb 10 2023

Extensions

More terms from James Sellers, Feb 19 2001

A320701 Indices of primes followed by a gap (distance to next larger prime) of 6.

Original entry on oeis.org

9, 11, 15, 16, 18, 21, 23, 32, 36, 37, 39, 40, 51, 54, 55, 56, 58, 67, 71, 73, 74, 76, 84, 86, 96, 100, 102, 103, 105, 107, 108, 110, 111, 118, 119, 123, 129, 130, 133, 160, 161, 164, 165, 167, 170, 174, 179, 184, 185, 187, 188, 194, 195, 199, 200, 202, 208, 210, 216, 218, 219, 227, 231
Offset: 1

Views

Author

M. F. Hasler, Oct 19 2018

Keywords

Comments

Indices of the primes given in A031924.
Subsequence of indices of sexy primes A023201.

Crossrefs

Equals A000720 o A031924.
Row 3 of A174349.
Indices of 6's in A001223.
Cf. A029707, A029709, A320702, A320703, ..., A320720 (analog for gaps 2, 4, 8, 10, ..., 44), A116493 (gap 70), A116496 (gap 100), A116497 (gap 200), A116495 (gap 210).

Programs

  • Mathematica
    Position[Differences[Prime[Range[250]]],6]//Flatten (* Harvey P. Dale, Oct 13 2022 *)
  • PARI
    A(N=100,g=6,p=2,i=primepi(p)-1,L=List())={forprime(q=1+p,,i++; if(p+g==p=q, listput(L,i); N--||break));Vec(L)} \\ returns the list of first N terms of the sequence

Formula

a(n) = A000720(A031924(n)).
A320701 = { i > 0 | prime(i+1) = prime(i) + 6 } = A001223^(-1)({6}).

A320702 Indices of primes followed by a gap (distance to next larger prime) of 8.

Original entry on oeis.org

24, 72, 77, 79, 87, 92, 94, 124, 126, 128, 132, 135, 156, 158, 166, 186, 192, 196, 220, 228, 241, 246, 248, 270, 281, 299, 304, 325, 330, 334, 338, 364, 370, 379, 386, 393, 400, 413, 417, 421, 432, 436, 454, 456, 482, 488, 507, 517, 519, 538, 589, 594, 620, 640, 661, 676, 689, 691, 712, 736, 750, 759
Offset: 1

Views

Author

M. F. Hasler, Oct 19 2018

Keywords

Comments

Indices of the primes given in A031926.

Crossrefs

Equals A000720 o A031926.
Row 4 of A174349.
Indices of 8's in A001223.
Cf. A029707, A029709, A320701, A320703, ..., A320720 (analog for gaps 2, 4, 6, 10, ..., 44), A116493 (gap 70), A116496 (gap 100), A116497 (gap 200), A116495 (gap 210).

Programs

  • Magma
    [n: n in [1..800] | NthPrime(n+1) - NthPrime(n) eq 8]; // Vincenzo Librandi, Mar 21 2019
  • Maple
    p:= 2: Res:= NULL: count:= 0:
    for n from 1 while count < 100 do
      q:= nextprime(p);
      if q-p = 8 then count:= count+1; Res:= Res, n; fi;
      p:= q;
    od:
    Res; # Robert Israel, Oct 19 2018
  • Mathematica
    Select[Range[800], Prime[#] + 8 == Prime[# + 1] &] (* Vincenzo Librandi, Mar 21 2019 *)
  • PARI
    A_vec(N=100,g=8,p=2,i=primepi(p)-1,L=List())={forprime(q=1+p,,i++; if(p+g==p=q, listput(L,i); N--||break));Vec(L)}
    

Formula

a(n) = A000720(A031926(n)) = A174349(4,n).
A320702 = { i > 0 | prime(i+1) = prime(i) + 8 } = A001223^(-1)({8}).

A320720 Indices of primes followed by a gap (distance to next larger prime) of 44.

Original entry on oeis.org

1831, 3861, 4009, 7499, 8937, 10328, 10427, 11725, 12904, 12926, 13011, 13051, 16596, 16915, 18280, 20055, 20160, 20352, 20619, 21458, 21465, 21550, 21659, 23752, 23934, 24107, 24384, 24445, 24651, 24871, 24933, 24992, 25027, 26089, 26166, 26483, 26923, 27038, 27048, 28898, 29343
Offset: 1

Views

Author

M. F. Hasler, Oct 19 2018

Keywords

Comments

Indices of the primes listed in A134121.

Crossrefs

Cf. A029707, A029709 (analog for gaps 2 and 4), A320701, A320702, ... A320719 (analog for gaps 6, 8, 10, ..., 42), A116493 (gap 70), A116496 (gap 100), A116497 (gap 200), A116495 (gap 210).
Equals A000720 o A134121.
Indices of 44's in A001223.
Row 22 of A174349.

Programs

  • PARI
    A(N=100,g=44,p=2,i=primepi(p)-1,L=List())={forprime(q=1+p,,i++; if(p+g==p=q, listput(L,i); N--||break));Vec(L)} \\ returns the list of first N terms of the sequence

Formula

a(n) = A000720(A134121(n)).

A107730 Numbers n such that prime(n+1) has the same last digit as prime(n).

Original entry on oeis.org

34, 42, 53, 61, 68, 80, 82, 101, 106, 115, 125, 127, 138, 141, 145, 154, 157, 172, 175, 177, 191, 193, 204, 222, 233, 258, 259, 266, 269, 279, 289, 306, 308, 310, 316, 324, 369, 383, 397, 399, 403, 418, 422, 431, 442, 443, 474, 480, 491, 497, 500, 502, 518
Offset: 1

Views

Author

Jonathan Vos Post, Jun 12 2007

Keywords

Examples

			a(1) = 34 because prime(34) = 139, prime(35) = 149, both end with the digit 9.
a(2) = 42 because prime(42) = 181, prime(43) = 191, both end with the digit 1.
a(4) = 61 because prime(61) = 283, prime(62) = 293, both end with the digit 3.
a(5) = 68 because prime(68) = 337, prime(69) = 347, both end with the digit 7.
		

Crossrefs

Union of rows r == 0 (mod 5) of A174349. Indices of multiples of 10 (A008592) in A001223.

Programs

  • GAP
    P:=List(Filtered([1..4000],IsPrime),n->Reversed(ListOfDigits(n)));;
    a:=Filtered([1..Length(P)-1],i->P[i+1][1]=P[i][1]); # Muniru A Asiru, Oct 31 2018
  • Maple
    isA107730 := proc(n) local ldign, ldign2 ; ldign := convert(ithprime(n),base,10) ; ldign2 := convert(ithprime(n+1),base,10) ; if op(1,ldign) = op(1,ldign2) then true ; else false ; fi ; end: for n from 1 to 600 do if isA107730(n) then printf("%d, ",n) ; fi ; od ; # R. J. Mathar, Jun 15 2007
  • Mathematica
    Select[Range[200],IntegerDigits[Prime[ # ]][[ -1]]==IntegerDigits[Prime[ #+1]][[ -1]]&] (* Stefan Steinerberger, Jun 14 2007 *)
    Flatten[Position[Partition[Prime[Range[600]],2,1],?(Mod[#[[1]],10] == Mod[#[[2]],10]&),{1},Heads->False]] (* _Harvey P. Dale, Aug 20 2015 *)
  • PARI
    isok(n) = (prime(n) % 10) == prime(n+1) % 10; \\ Michel Marcus, Feb 16 2017
    
  • PARI
    is_A107730(n)=!((nextprime(1+n=prime(n))-n)%10) \\ This (...) is twice as fast as prime(n+1)-prime(n), and prime(n) becomes very slow for n > 41538, even with primelimit = 10^7. - M. F. Hasler, Oct 24 2018
    

Formula

Numbers n such that A000040(n)==A000040(n+1) mod 10, or A000040(n+1) - A000040(n) = 10*k for some integer k, or n such that A129750(n) = 0. [Corrected and edited by M. F. Hasler, Oct 24 2018]
A107730 = A001223^(-1)(A008592) = { i > 0 | A001223(i) == 0 (mod 10)} = U_{k>0} {A174349(5k,j); j >= 1}. - M. F. Hasler, Oct 24 2018
Union of A320703, A320708, A320713, A320718, ... A116493,..., A116496 ... etc. - R. J. Mathar, Apr 30 2024

Extensions

More terms from Stefan Steinerberger and R. J. Mathar, Jun 14 2007

A320703 Indices of primes followed by a gap (distance to next larger prime) of 10.

Original entry on oeis.org

34, 42, 53, 61, 68, 80, 82, 101, 106, 115, 125, 127, 138, 141, 145, 157, 172, 175, 177, 191, 193, 204, 222, 233, 258, 266, 269, 279, 289, 306, 308, 310, 316, 324, 369, 383, 397, 399, 403, 418, 422, 431, 443, 474, 491, 497, 500, 502, 518, 525, 531, 535, 575
Offset: 1

Views

Author

M. F. Hasler, Oct 19 2018

Keywords

Comments

Indices of the primes given in A031928.

Crossrefs

Equals A000720 o A031928.
Row 5 of A174349.
Indices of 10's in A001223.
Subsequence of A107730: prime(n+1) ends in same digit as prime(n).
Cf. A029707, A029709, A320701, A320702, ..., A320720 (analog for gaps 2, 4, 6, 8, ..., 44), A116493 (gap 70), A116496 (gap 100), A116497 (gap 200), A116495 (gap 210).

Programs

Formula

a(n) = A000720(A031928(n)).
A320703 = { i > 0 | prime(i+1) = prime(i) + 10 }.

A320708 Indices of primes followed by a gap (distance to next larger prime) of 20.

Original entry on oeis.org

154, 259, 442, 480, 548, 753, 777, 783, 876, 971, 1035, 1066, 1095, 1106, 1147, 1254, 1277, 1302, 1337, 1345, 1355, 1381, 1396, 1400, 1423, 1438, 1562, 1592, 1613, 1662, 1669, 1808, 1955, 2016, 2043, 2081, 2116, 2129, 2147, 2226, 2302, 2307, 2387, 2517, 2547, 2563, 2694, 2724, 2745, 2755, 2766
Offset: 1

Views

Author

M. F. Hasler, Oct 19 2018

Keywords

Comments

Indices of the primes listed in A031938.

Crossrefs

Equals A000720 o A031938.
Row 10 of A174349.
Subsequence of A107730 (prime(n+1) ends in same digit as prime(n)).
Indices of 20's in A001223.
Cf. A029707, A029709, A320701, A320702, ..., A320720 (analog for gaps 2, 4, 6, 8, ..., 44), A116493 (gap 70), A116496 (gap 100), A116497 (gap 200), A116495 (gap 210).

Programs

  • Magma
    [n: n in [1..3000] | NthPrime(n+1) - NthPrime(n) eq 20]; // Vincenzo Librandi, Mar 22 2019
  • Mathematica
    Select[Range[3000], Prime[#] + 20 == Prime[# + 1] &] (* Vincenzo Librandi, Mar 22 2019 *)
  • PARI
    A(N=100,g=20,p=2,i=primepi(p)-1,L=List())={forprime(q=1+p,,i++; if(p+g==p=q, listput(L,i); N--||break));Vec(L)} \\ returns the list of first N terms of the sequence
    

Formula

a(n) = A000720(A031938(n)).
A320708 = { i > 0 | prime(i+1) = prime(i) + 20 } = A001223^(-1)({20}).

A174350 Square array: row n >= 1 lists the primes p for which the next prime is p+2n; read by antidiagonals.

Original entry on oeis.org

3, 5, 7, 11, 13, 23, 17, 19, 31, 89, 29, 37, 47, 359, 139, 41, 43, 53, 389, 181, 199, 59, 67, 61, 401, 241, 211, 113, 71, 79, 73, 449, 283, 467, 293, 1831, 101, 97, 83, 479, 337, 509, 317, 1933, 523, 107, 103, 131, 491, 409, 619, 773, 2113, 1069, 887
Offset: 1

Views

Author

Clark Kimberling, Mar 16 2010

Keywords

Comments

Every odd prime p = prime(i), i > 1, occurs in this array, in row (prime(i+1) - prime(i))/2. Polignac's conjecture states that each row contains an infinite number of indices. In case this does not hold, we can use the convention to continue finite rows with 0's, to ensure the sequence is well defined. - M. F. Hasler, Oct 19 2018
A permutation of the odd primes (A065091). - Robert G. Wilson v, Sep 13 2022

Examples

			Upper left hand corner of the array:
     3     5    11    17    29    41    59    71   101 ...
     7    13    19    37    43    67    79    97   103 ...
    23    31    47    53    61    73    83   131   151 ...
    89   359   389   401   449   479   491   683   701 ...
   139   181   241   283   337   409   421   547   577 ...
   199   211   467   509   619   661   797   997  1201 ...
   113   293   317   773   839   863   953  1409  1583 ...
  1831  1933  2113  2221  2251  2593  2803  3121  3373 ...
   523  1069  1259  1381  1759  1913  2161  2503  2861 ...
  (...)
Row 1: p(2) = 3, p(3) = 5, p(5) = 11, p(7) = 17,... these being the primes for which the next prime is 2 greater: (lesser of) twin primes A001359.
Row 2: p(4) = 7, p(6) = 13, p(8) = 19,... these being the primes for which the next prime is 4 greater: (lesser of) cousin primes A029710.
		

Crossrefs

Rows 35, 40, 45, 50, ...: A204792, A126722, A204764, A050434 (row 50), A204801, A204672, A204802, A204803, A126724 (row 75), A184984, A204805, A204673, A204806, A204807 (row 100); A224472 (row 150).
Column 1: A000230.
Column 2: A046789.

Programs

  • Mathematica
    rows = 10; t2 = {}; Do[t = {}; p = Prime[2]; While[Length[t] < rows - off + 1, nextP = NextPrime[p]; If[nextP - p == 2*off, AppendTo[t, p]]; p = nextP]; AppendTo[t2, t], {off, rows}]; Table[t2[[b, a - b + 1]], {a, rows}, {b, a}] (* T. D. Noe, Feb 11 2014 *)
    t[r_, 0] = 2; t[r_, c_] := Block[{p = NextPrime@ t[r, c - 1], q}, q = NextPrime@ p; While[ p + 2r != q, p = q; q = NextPrime@ q]; p]; Table[ t[r - c + 1, c], {r, 10}, {c, r, 1, -1}] (* Robert G. Wilson v, Nov 06 2020 *)
  • PARI
    A174350_row(g, N=50, i=0, p=prime(i+1), L=[])={g*=2; forprime(q=1+p, , i++; if(p+g==p=q, L=concat(L, q-g); N--||return(L)))} \\ Returns the first N terms of row g. - M. F. Hasler, Oct 19 2018

Formula

a(n) = A000040(A174349(n)). - Michel Marcus, Mar 30 2016

Extensions

Definition corrected and other edits by M. F. Hasler, Oct 19 2018

A320704 Indices of primes followed by a gap (distance to next larger prime) of 12.

Original entry on oeis.org

46, 47, 91, 97, 114, 121, 139, 168, 197, 203, 214, 232, 239, 240, 242, 267, 278, 280, 290, 312, 317, 342, 357, 363, 376, 381, 404, 423, 437, 439, 449, 452, 461, 470, 472, 489, 499, 511, 546, 550, 562, 565, 599, 600, 617, 633, 634, 647, 653, 657, 675, 680, 692, 698, 716, 728
Offset: 1

Views

Author

M. F. Hasler, Oct 19 2018

Keywords

Comments

Indices of the primes given in A031930.

Crossrefs

Equals A000720 o A031930.
Row 6 of A174349.
Indices of 12's in A001223.
Cf. A029707, A029709, A320701, A320702, ..., A320720 (analog for gaps 2, 4, 6, 8, ..., 44), A116493 (gap 70), A116496 (gap 100), A116497 (gap 200), A116495 (gap 210).

Programs

  • Magma
    [n: n in [1..1000] | NthPrime(n+1) - NthPrime(n) eq 12]; // Vincenzo Librandi, Mar 21 2019
  • Mathematica
    Select[Range[1000], Prime[#] + 12 == Prime[# + 1] &] (* Vincenzo Librandi, Mar 21 2019 *)
  • PARI
    A320704_vec(N=100,g=12,p=2,i=primepi(p)-1,L=List())={forprime(q=1+p,,i++; if(p+g==p=q, listput(L,i); N--||break));Vec(L)} \\ returns the list of first N terms of the sequence
    

Formula

a(n) = A000720(A031930(n)).
A320704 = { i > 0 | prime(i+1) = prime(i) + 12 }.

A320705 Indices of primes followed by a gap (distance to next larger prime) of 14.

Original entry on oeis.org

30, 62, 66, 137, 146, 150, 162, 223, 250, 283, 309, 350, 360, 382, 402, 410, 424, 434, 503, 514, 526, 532, 536, 570, 610, 649, 654, 666, 687, 704, 706, 747, 780, 790, 867, 906, 919, 929, 967, 978, 981, 992, 1011, 1023, 1038, 1042, 1057, 1072, 1133, 1154, 1160, 1177, 1184
Offset: 1

Views

Author

M. F. Hasler, Oct 19 2018

Keywords

Comments

Indices of the primes listed in A031932.

Crossrefs

Equals A000720 o A031932.
Row 7 of A174349.
Indices of 14's in A001223.
Cf. A029707, A029709, A320701, A320702, ..., A320720 (analog for gaps 2, 4, 6, 8, ..., 44), A116493 (gap 70), A116496 (gap 100), A116497 (gap 200), A116495 (gap 210).

Programs

  • Magma
    [n: n in [1..1500] | NthPrime(n+1) - NthPrime(n) eq 14]; // Vincenzo Librandi, Mar 19 2019
  • Mathematica
    Select[Range[1500], Prime[#] + 14 == Prime[# + 1] &] (* Vincenzo Librandi, Mar 19 2019 *)
    Position[Differences[Prime[Range[1200]]],14]//Flatten (* Harvey P. Dale, Nov 28 2024 *)
  • PARI
    A(N=100,g=14,p=2,i=primepi(p)-1,L=List())={forprime(q=1+p,,i++; if(p+g==p=q, listput(L,i); N--||break));Vec(L)} \\ returns the list of first N terms of the sequence
    

Formula

a(n) = A000720(A031932(n)).
A320705 = { i > 0 | prime(i+1) = prime(i) + 14 }.
Showing 1-10 of 23 results. Next