cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 54 results. Next

A255906 Number of collections of nonempty multisets with a total of n objects having color set {1,...,k} for some k<=n.

Original entry on oeis.org

1, 1, 4, 16, 76, 400, 2356, 15200, 106644, 806320, 6526580, 56231024, 513207740, 4941362512, 50013751812, 530481210672, 5880285873060, 67954587978448, 816935340368068, 10196643652651664, 131904973822724540, 1765645473517011568, 24420203895517396180
Offset: 0

Views

Author

Alois P. Heinz, Mar 10 2015

Keywords

Comments

Number of multiset partitions of normal multisets of size n, where a multiset is normal if it spans an initial interval of positive integers. - Gus Wiseman, Jul 30 2018

Examples

			a(0) = 1: {}.
a(1) = 1: {{1}}.
a(2) = 4: {{1},{1}}, {{1,1}}, {{1},{2}}, {{1,2}}.
a(3) = 16: {{1},{1},{1}}, {{1},{1,1}}, {{1,1,1}}, {{1},{1},{2}}, {{1},{2},{2}}, {{1},{1,2}}, {{1},{2,2}}, {{2},{1,1}}, {{2},{1,2}}, {{1,1,2}}, {{1,2,2}}, {{1},{2},{3}}, {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}}, {{1,2,3}}.
		

Crossrefs

Row sums of A255903. Also row sums of A317532.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    Table[Length[Join@@mps/@allnorm[n]],{n,6}] (* Gus Wiseman, Jul 30 2018 *)
  • PARI
    R(n, k)={Vec(-1 + 1/prod(j=1, n, (1 - x^j + O(x*x^n))^binomial(k+j-1, j) ))}
    seq(n) = {concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ))} \\ Andrew Howroyd, Sep 23 2023

Formula

a(n) = Sum_{k=0..n} A255903(n,k).

A322661 Number of graphs with loops spanning n labeled vertices.

Original entry on oeis.org

1, 1, 5, 45, 809, 28217, 1914733, 254409765, 66628946641, 34575388318705, 35680013894626133, 73392583417010454429, 301348381381966079690489, 2471956814761996896091805993, 40530184362443281653842556898237, 1328619783326799871943604598592805525
Offset: 0

Views

Author

Gus Wiseman, Dec 22 2018

Keywords

Comments

The span of a graph is the union of its edges.

Examples

			The a(2) = 5 edge-sets:
  {{1,2}}
  {{1,1},{1,2}}
  {{1,1},{2,2}}
  {{1,2},{2,2}}
  {{1,1},{1,2},{2,2}}
		

Crossrefs

Cf. A000666, A006125, A006129 (loops not allowed), A054921, A062740, A116539, A320461, A322635, A048291 (for directed edgs).

Programs

  • Mathematica
    Table[Sum[(-1)^(n-k)*Binomial[n,k]*2^Binomial[k+1,2],{k,0,n}],{n,10}]
    (* second program *)
    Table[Select[Expand[Product[1+x[i]*x[j],{j,n},{i,j}]],And@@Table[!FreeQ[#,x[i]],{i,n}]&]/.x[_]->1,{n,7}]
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n,k)*2^binomial(k+1,2)) \\ Andrew Howroyd, Jan 06 2024

Formula

Exponential transform of A062740, if we assume A062740(1) = 1.
Inverse binomial transform of A006125(n+1) = 2^binomial(n+1,2).

A381454 Number of multisets that can be obtained by choosing a strict integer partition of each prime index of n and taking the multiset union.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 3, 1, 4, 2, 2, 1, 5, 1, 6, 2, 2, 3, 8, 1, 3, 4, 1, 2, 10, 2, 12, 1, 3, 5, 4, 1, 15, 6, 4, 2, 18, 2, 22, 3, 2, 8, 27, 1, 3, 3, 5, 4, 32, 1, 6, 2, 6, 10, 38, 2, 46, 12, 2, 1, 8, 3, 54, 5, 8, 4, 64, 1, 76, 15, 3, 6, 6, 4, 89, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 08 2025

Keywords

Comments

First differs from A357982 at a(25) = 3, A357982(25) = 4.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A multiset partition can be regarded as an arrow in the ranked poset of integer partitions. For example, we have {{1},{1,2},{1,3},{1,2,3}}: {1,1,1,1,2,2,3,3} -> {1,3,4,6}, or (33221111) -> (6431) (depending on notation).
Set multipartitions are generally not transitive. For example, we have arrows: {{1},{1,2}}: {1,1,2} -> {1,3} and {{1,3}}: {1,3} -> {4}, but there is no set multipartition {1,1,2} -> {4}.

Examples

			The a(25) = 3 multisets are: {3,3}, {1,2,3}, {1,1,2,2}.
		

Crossrefs

For constant instead of strict partitions see A381453, A355733, A381455, A000688.
Positions of 1 are A003586.
The upper version is A381078, before sums A050320.
For distinct block-sums see A381634, A381633, A381806.
Multiset partitions of prime indices:
- For multiset partitions (A001055) see A317141 (upper), A300383 (lower).
- For strict multiset partitions (A045778) see A381452.
- For set systems (A050326, zeros A293243) see A381441 (upper).
- For sets of constant multisets (A050361) see A381715.
- For strict multiset partitions with distinct sums (A321469) see A381637.
- For sets of constant multisets with distinct sums (A381635, zeros A381636) see A381716.
More on set systems: A050342, A116539, A296120, A318361.
More on set multipartitions: A089259, A116540, A270995, A296119, A318360.
More on set multipartitions with distinct sums: A279785, A381717, A381718.
A000041 counts integer partitions, strict A000009.
A000040 lists the primes.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.
A358914 counts twice-partitions into distinct strict partitions.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Union[Sort/@Join@@@Tuples[Select[IntegerPartitions[#],UnsameQ@@#&]&/@prix[n]]]],{n,100}]

Formula

a(A002110(n)) = A381808(n).

A293243 Numbers that cannot be written as a product of distinct squarefree numbers.

Original entry on oeis.org

4, 8, 9, 16, 24, 25, 27, 32, 40, 48, 49, 54, 56, 64, 72, 80, 81, 88, 96, 104, 108, 112, 121, 125, 128, 135, 136, 144, 152, 160, 162, 169, 176, 184, 189, 192, 200, 208, 216, 224, 232, 240, 243, 248, 250, 256, 272, 288, 289, 296, 297, 304, 320, 324, 328, 336
Offset: 1

Views

Author

Gus Wiseman, Oct 03 2017

Keywords

Comments

First differs from A212164 at a(441).
Numbers n such that A050326(n) = 0. - Felix Fröhlich, Oct 04 2017
Includes A246547, and all numbers of the form p^a*q^b where p and q are primes, a >= 1 and b >= 3. - Robert Israel, Oct 10 2017
Also numbers whose prime indices cannot be partitioned into a set of sets. For example, the prime indices of 90 are {1,2,2,3}, and we have sets of sets: {{2},{1,2,3}}, {{1,2},{2,3}}, {{1},{2},{2,3}}, {{2},{3},{1,2}}, so 90 is not in the sequence. - Gus Wiseman, Apr 28 2025

Examples

			120 is not in the sequence because 120 = 2*6*10. 3600 is not in the sequence because 3600 = 2*6*10*30.
		

Crossrefs

These are the zeros of A050326.
Multiset partitions of this type (set of sets) are counted by A050342.
Twice-partitions of this type (set of sets) are counted by A279785, see also A358914.
Normal multisets of this type are counted by A292432, A292444, A381996, A382214.
The case of a unique choice is A293511, counted by A382079.
For distinct block-sums instead of blocks see A381806, A381990, A381992, A382075.
Partitions of this type are counted by A382078.
The complement is A382200, counted by A382077.
A001055 counts factorizations, strict A045778.
A050320 counts factorizations into squarefree numbers.
A050345 counts factorizations partitioned into into distinct sets.
A317141 counts coarsenings of prime indices, refinements A300383.

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    A:= Vector(N):
    A[1]:= 1:
    for n from 2 to N do
      if numtheory:-issqrfree(n) then
          S:= [$1..N/n]; T:= n*S; A[T]:= A[T]+A[S]
        fi;
    od:
    select(t -> A[t]=0, [$1..N]); # Robert Israel, Oct 10 2017
  • Mathematica
    nn=500;
    sqfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Select[Range[nn],Length[sqfacs[#]]===0&]

A295193 Number of regular simple graphs on n labeled nodes.

Original entry on oeis.org

1, 2, 2, 8, 14, 172, 932, 45936, 1084414, 155862512, 10382960972, 6939278572096, 2203360500122300, 4186526756621772344, 3747344008241368443820, 35041787059691023579970848, 156277111373303386104606663422, 4142122641757598618318165240180096
Offset: 1

Views

Author

Álvar Ibeas, Nov 16 2017

Keywords

Examples

			From _Gus Wiseman_, Dec 19 2018: (Start)
A graph is regular if all vertices have the same degree. For example, the a(4) = 8 simple regular graphs are:
  1 2
  3 4
.
  4---1  3---1  2---1
  3---2  4---2  4---3
.
  3---4  4---3  4---2
  |   |  |   |  |   |
  1---2  1---2  1---3
.
  4---3
  | X |
  2---1
(End)
		

Crossrefs

Row sums of A059441.

Programs

  • Mathematica
    Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{2}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{k,0,n-1}],{n,1,9}] (* Gus Wiseman, Dec 19 2018 *)
  • PARI
    \\ See link for program file.
    for(n=1, 10, print1(A295193(n), ", ")) \\ Andrew Howroyd, Aug 28 2019

Extensions

a(16)-a(18) from Andrew Howroyd, Aug 28 2019

A381441 Number of multisets that can be obtained by partitioning the prime indices of n into a set of sets (set system) and taking their sums.

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, 0, 1, 1, 5, 1, 0, 2, 2, 2, 1, 1, 2, 2, 0, 1, 5, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 4, 1, 2, 1, 0, 2, 5, 1, 1, 2, 5, 1, 0, 1, 2, 1, 1, 2, 5, 1, 0, 0, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 06 2025

Keywords

Comments

First differs from A050326 at a(210) = 13, A050326(210) = 15. This comes from the set systems {{3},{1,2,4}} and {{1,2},{3,4}}, and from {{4},{1,2,3}} and {{1,3},{2,4}}.
Also the number of multisets that can be obtained by taking the sums of prime indices of each factor in a strict factorization of n into squarefree numbers > 1.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A multiset partition can be regarded as an arrow in the ranked poset of integer partitions. For example, we have {{1},{1,2},{1,3},{1,2,3}}: {1,1,1,1,2,2,3,3} -> {1,3,4,6}, or (33221111) -> (6431) (depending on notation).
Sets of sets are generally not transitive. For example, we have arrows: {{1},{1,2}}: {1,1,2} -> {1,3} and {{1,3}}: {1,3} -> {4}, but there is no set of sets {1,1,2} -> {4}.

Examples

			The prime indices of 60 are {1,1,2,3}, with partitions into sets of sets:
  {{1},{1,2,3}}
  {{1,2},{1,3}}
  {{1},{2},{1,3}}
  {{1},{3},{1,2}}
with block-sums: {1,6}, {3,4}, {1,2,4}, {1,3,3}, which are all different, so a(60) = 4.
		

Crossrefs

Before taking sums we had A050326, non-strict A050320.
Positions of 0 are A293243.
Positions of 1 are A293511.
This is the strict version of A381078 (lower A381454).
For distinct block-sums (instead of blocks) we have A381634, before sums A381633.
Other multiset partitions of prime indices:
- For multisets of constant multisets (A000688) see A381455 (upper), A381453 (lower).
- For multiset partitions (A001055) see A317141 (upper), A300383 (lower).
- For strict multiset partitions (A045778) see A381452.
- For sets of constant multisets (A050361) see A381715.
- For strict multiset partitions with distinct sums (A321469) see A381637.
- For sets of constant multisets with distinct sums (A381635) see A381716, A381636.
More on set systems: A050342, A116539, A279785, A296120, A318361.
A000041 counts integer partitions, strict A000009.
A000040 lists the primes, differences A001223.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Union[Sort[Total/@prix/@#]&/@Select[facs[n],UnsameQ@@#&&And@@SquareFreeQ/@#&]]],{n,100}]

Formula

a(A002110(n)) = A066723(n).

A381718 Number of normal multiset partitions of weight n into sets with distinct sums.

Original entry on oeis.org

1, 1, 2, 6, 23, 106, 549, 3184, 20353, 141615, 1063399, 8554800, 73281988, 665141182, 6369920854, 64133095134, 676690490875, 7462023572238, 85786458777923, 1025956348473929, 12739037494941490
Offset: 0

Views

Author

Gus Wiseman, Mar 26 2025

Keywords

Comments

We call a multiset or multiset partition normal iff it covers an initial interval of positive integers. The weight of a multiset partition is the sum of sizes of its blocks.

Examples

			The a(1) = 1 through a(3) = 6 multiset partitions:
  {{1}}  {{1,2}}    {{1,2,3}}
         {{1},{2}}  {{1},{1,2}}
                    {{1},{2,3}}
                    {{2},{1,2}}
                    {{2},{1,3}}
                    {{1},{2},{3}}
The a(4) = 23 factorizations:
  2*3*6  5*30    3*30    2*30    210
         10*15   6*15    6*10    2*105
         2*5*15  2*3*15  2*3*10  3*70
         3*5*10                  5*42
                                 7*30
                                 6*35
                                 10*21
                                 2*3*35
                                 2*5*21
                                 2*7*15
                                 3*5*14
                                 2*3*5*7
		

Crossrefs

For distinct blocks instead of sums we have A116539, see A050326.
Without distinct sums we have A116540 (normal set multipartitions).
Twice-partitions of this type are counted by A279785.
Without strict blocks we have A326519.
Factorizations of this type are counted by A381633.
For constant instead of strict blocks we have A382203.
For distinct sizes instead of sums we have A382428, non-strict blocks A326517.
For equal instead of distinct block-sums we have A382429, non-strict blocks A326518.
A000670 counts patterns, ranked by A055932 and A333217, necklace A019536.
A001055 count factorizations, strict A045778.
Normal multiset partitions: A034691, A035310, A255906.
Set multipartitions: A089259, A270995, A296119, A318360.

Programs

  • Mathematica
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Join@@(Select[mps[#],UnsameQ@@Total/@#&&And@@UnsameQ@@@#&]&/@allnorm[n])],{n,0,5}]

Extensions

a(10)-a(11) from Robert Price, Mar 31 2025
a(12)-a(20) from Christian Sievers, Apr 05 2025

A381992 Number of integer partitions of n that can be partitioned into sets with distinct sums.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 6, 9, 13, 17, 25, 33, 44, 59, 77, 100, 134, 170, 217, 282, 360, 449, 571, 719, 899, 1122, 1391, 1727, 2136, 2616, 3209, 3947, 4800, 5845, 7094, 8602, 10408, 12533, 15062, 18107, 21686, 25956, 30967, 36936, 43897, 52132, 61850, 73157, 86466, 101992, 120195
Offset: 0

Views

Author

Gus Wiseman, Mar 16 2025

Keywords

Comments

Also the number of integer partitions of n whose Heinz number belongs to A382075 (can be written as a product of squarefree numbers with distinct sums of prime indices).

Examples

			There are 6 ways to partition (3,2,2,1) into sets:
  {{2},{1,2,3}}
  {{1,2},{2,3}}
  {{1},{2},{2,3}}
  {{2},{2},{1,3}}
  {{2},{3},{1,2}}
  {{1},{2},{2},{3}}
Of these, 3 have distinct block sums:
  {{2},{1,2,3}}
  {{1,2},{2,3}}
  {{1},{2},{2,3}}
so (3,2,2,1) is counted under a(8).
The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)  (3)    (4)      (5)      (6)        (7)        (8)
            (2,1)  (3,1)    (3,2)    (4,2)      (4,3)      (5,3)
                   (2,1,1)  (4,1)    (5,1)      (5,2)      (6,2)
                            (2,2,1)  (3,2,1)    (6,1)      (7,1)
                            (3,1,1)  (4,1,1)    (3,2,2)    (3,3,2)
                                     (2,2,1,1)  (3,3,1)    (4,2,2)
                                                (4,2,1)    (4,3,1)
                                                (5,1,1)    (5,2,1)
                                                (3,2,1,1)  (6,1,1)
                                                           (3,2,2,1)
                                                           (3,3,1,1)
                                                           (4,2,1,1)
                                                           (3,2,1,1,1)
		

Crossrefs

More on set multipartitions: A089259, A116540, A270995, A296119, A318360.
Twice-partitions of this type are counted by A279785.
Multiset partitions of this type are counted by A381633, zeros of A381634.
For constant instead of strict blocks see A381717, A381636, A381635, A381716, A381991.
Normal multiset partitions of this type are counted by A381718, see A116539.
The complement is counted by A381990, ranked by A381806.
These partitions are ranked by A382075.
For distinct blocks instead of sums we have A382077, complement A382078.
For a unique choice we have A382079.
A000041 counts integer partitions, strict A000009.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions of prime indices into distinct sets.
A265947 counts refinement-ordered pairs of integer partitions.
A382201 lists MM-numbers of sets with distinct sums.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[IntegerPartitions[n],Length[Select[mps[#], And@@UnsameQ@@@#&&UnsameQ@@Total/@#&]]>0&]],{n,0,10}]

Extensions

a(21)-a(50) from Bert Dobbelaere, Mar 29 2025

A381990 Number of integer partitions of n that cannot be partitioned into a set (or multiset) of sets with distinct sums.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 5, 6, 9, 13, 17, 23, 33, 42, 58, 76, 97, 127, 168, 208, 267, 343, 431, 536, 676, 836, 1045, 1283, 1582, 1949, 2395, 2895, 3549, 4298, 5216, 6281, 7569, 9104, 10953, 13078, 15652, 18627, 22207, 26325, 31278, 37002, 43708, 51597, 60807, 71533, 84031
Offset: 0

Views

Author

Gus Wiseman, Mar 15 2025

Keywords

Examples

			The partition y = (3,3,3,2,2,1,1,1,1) has only one multiset partition into a set of sets, namely {{1},{3},{1,2},{1,3},{1,2,3}}, but this does not have distinct sums, so y is counted under a(17).
The a(2) = 1 through a(8) = 9 partitions:
  (11)  (111)  (22)    (2111)   (33)      (2221)     (44)
               (1111)  (11111)  (222)     (4111)     (2222)
                                (3111)    (22111)    (5111)
                                (21111)   (31111)    (22211)
                                (111111)  (211111)   (41111)
                                          (1111111)  (221111)
                                                     (311111)
                                                     (2111111)
                                                     (11111111)
		

Crossrefs

More on set multipartitions: A089259, A116540, A270995, A296119, A318360.
Twice-partitions of this type are counted by A279785.
For constant instead of strict blocks see A381717, A381636, A381635, A381716, A381991.
Normal multiset partitions of this type are counted by A381718, see A116539.
These partitions are ranked by A381806, zeros of A381634 and A381633.
The complement is counted by A381992, ranked by A382075.
For distinct blocks we have A382078, complement A382077, unique A382079.
MM-numbers of these multiset partitions (strict blocks with distinct sum) are A382201.
A000041 counts integer partitions, strict A000009.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions of prime indices into distinct sets.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[IntegerPartitions[n],Length[Select[mps[#],And@@UnsameQ@@@#&&UnsameQ@@Total/@#&]]==0&]],{n,0,10}]

Extensions

a(21)-a(50) from Bert Dobbelaere, Mar 29 2025

A319190 Number of regular hypergraphs spanning n vertices.

Original entry on oeis.org

1, 1, 3, 19, 879, 5280907, 1069418570520767
Offset: 0

Views

Author

Gus Wiseman, Dec 17 2018

Keywords

Comments

We define a hypergraph to be any finite set of finite nonempty sets. A hypergraph is regular if all vertices have the same degree. The span of a hypergraph is the union of its edges.

Examples

			The a(3) = 19 regular hypergraphs:
                 {{1,2,3}}
                {{1},{2,3}}
                {{2},{1,3}}
                {{3},{1,2}}
               {{1},{2},{3}}
            {{1},{2,3},{1,2,3}}
            {{2},{1,3},{1,2,3}}
            {{3},{1,2},{1,2,3}}
            {{1,2},{1,3},{2,3}}
           {{1},{2},{3},{1,2,3}}
           {{1},{2},{1,3},{2,3}}
           {{1},{3},{1,2},{2,3}}
           {{2},{3},{1,2},{1,3}}
        {{1,2},{1,3},{2,3},{1,2,3}}
       {{1},{2},{1,3},{2,3},{1,2,3}}
       {{1},{3},{1,2},{2,3},{1,2,3}}
       {{2},{3},{1,2},{1,3},{1,2,3}}
      {{1},{2},{3},{1,2},{1,3},{2,3}}
  {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{1,n}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{k,1,2^n}],{n,5}]

Extensions

a(6) from Andrew Howroyd, Mar 12 2020
Showing 1-10 of 54 results. Next