cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 99 results. Next

A273396 Indecomposable collections of multisets with a total of n objects having entries {1,2,...,k} for some k<=n or INVERTi transform of A255906.

Original entry on oeis.org

0, 1, 3, 9, 39, 201, 1227, 8305, 61383, 487761, 4131819, 37072361, 350644047, 3482957945, 36220558835, 393329507169, 4450157382383, 52354044069009, 639307054297779, 8090092395577625, 105935581968131399, 1433456549698679385, 20018656224312123051
Offset: 0

Views

Author

Mike Zabrocki, May 21 2016

Keywords

Comments

A multiset partition of a multiset S is a set of nonempty multisets whose union is S. The total number of multisets of size n and whose entries have all the values in {1,2,...,k} for some k<=n is given by sequence A255906. A multiset partition is decomposable if there exists a value 1<=dd. A multiset partition is called indecomposable otherwise.

Examples

			a(3) = 9 because there are 16 multiset partitions, 9 of them are indecomposable ({{1},{1},{1}}, {{1},{1,1}}, {{1,1,1}}, {{1},{1,2}}, {{2},{1,2}}, {{1,1,2}}, {{1,2,2}}, {{2},{1,3}}, {{1,2,3}}) and 7 are decomposable ({{1},{1},{2}}, {{1},{2},{2}}, {{1},{2,2}}, {{2},{1,1}}, {{1},{2},{3}}, {{1},{2,3}}, {{3},{1,2}}).
		

References

  • P. A. MacMahon, Combinatory Analysis, vol 1, Cambridge, 1915.

Crossrefs

INVERTi transform of A255906.

A302242 Total weight of the n-th multiset multisystem. Totally additive with a(prime(n)) = Omega(n).

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 2, 0, 2, 1, 1, 1, 2, 2, 2, 0, 1, 2, 3, 1, 3, 1, 2, 1, 2, 2, 3, 2, 2, 2, 1, 0, 2, 1, 3, 2, 3, 3, 3, 1, 1, 3, 2, 1, 3, 2, 2, 1, 4, 2, 2, 2, 4, 3, 2, 2, 4, 2, 1, 2, 3, 1, 4, 0, 3, 2, 1, 1, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 1, 4, 1, 1, 3, 2, 2, 3, 1, 4
Offset: 1

Views

Author

Gus Wiseman, Apr 03 2018

Keywords

Comments

A multiset multisystem is a finite multiset of finite multisets of positive integers. The n-th multiset multisystem is constructed by factoring n into prime numbers and then factoring each prime index into prime numbers and taking their prime indices. This produces a unique multiset multisystem for each n, and every possible multiset multisystem is so constructed as n ranges over all positive integers.

Examples

			Sequence of finite multisets of finite multisets of positive integers begins: (), (()), ((1)), (()()), ((2)), (()(1)), ((11)), (()()()), ((1)(1)), (()(2)), ((3)), (()()(1)), ((12)), (()(11)), ((1)(2)), (()()()()), ((4)), (()(1)(1)), ((111)), (()()(2)).
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> add(add(j[2], j=ifactors(pi(i[1]))[2])*i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..100);  # Alois P. Heinz, Sep 07 2018
  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Total[PrimeOmega/@primeMS[n]],{n,100}]
  • PARI
    a(n,f=factor(n))=sum(i=1,#f~, bigomega(primepi(f[i,1]))*f[i,2]) \\ Charles R Greathouse IV, Nov 10 2021

A269134 Number of combinatory separations of normal multisets of weight n.

Original entry on oeis.org

1, 4, 14, 57, 223, 948, 3940, 16994, 72964, 317959, 1385592, 6085763, 26738139, 117939291, 520553999, 2301781692, 10181786176, 45074744448, 199558036891, 883670342156, 3912320450786
Offset: 1

Views

Author

Gus Wiseman, Feb 20 2016

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers. The type of a multiset of integers is the unique normal multiset that has the same sequence of multiplicities when its entries are taken in increasing order. For example the type of 335556 is 112223.
If and only if there exists a multiset partition p whose multiset union has type h and where g = {g_1,...,g_n} is the multiset of types of the blocks of p, there exists a *combinatory separation* which is regarded as a multi-arrow p:h<=g. For example 1122<={12,11} is *not* a combinatory separation because one cannot partition a multiset of type 1122 into two blocks where one block has two distinct elements and the other block has two equal elements. Normal multisets N and combinatory separations S comprise a multi-order (N,S). The value of a(n) is the total number of *distinct* combinatory separations h<=g where h has weight n.
The term "combinatory separation" is inspired by MacMahon's inscrutable "Combinatory Analysis" (1915) which states: "A partition of any number is "separated" into "separates" by writing down a set [sic] of partitions, each partition in its own brackets, from left to right so that when all of the parts of these partitions are assembled in a single bracket, the partition separated is reproduced."

Examples

			For a(3) the 14 distinct combinatory separations grouped according to head are: 111<={111}, 111<={1,11}, 111<={1,1,1}; 112<={112}, 112<={1,11}, 112<={1,12}, 112<={1,1,1}; 122<={122}, 122<={1,11}, 122<={1,12}, 122<={1,1,1}; 123<={123}, 123<={1,12}, 123<={1,1,1}.
Note that in this enumeration the two multiset partitions {{1},{2,3}}:123<={1,12} and {{1,2},{3}}:123<={1,12} do not represent distinct multi-arrows and consequently are counted only once, whereas the two multiset partitions {{1},{1,2}}:112<={1,12} and {{1,2},{2}}:122<={1,12} are counted separately even though they have the same multiset of block-types.
		

Crossrefs

Cf. A255906 (multiset partitions of normal multisets of weight n), A096443 (multiset partitions of multiset class representatives), A007716 (non-isomorphic multiset partitions of weight n).

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    normize[m_]:=m/.Rule@@@Table[{Union[m][[i]],i},{i,Length[Union[m]]}];
    Table[Length[Union@@Table[{m,Sort[normize/@#]}&/@mps[m],{m,allnorm[n]}]],{n,7}] (* Gus Wiseman, Aug 29 2018 *)

Extensions

a(9) from Gus Wiseman, Aug 29 2018
a(10) from Robert Price, Sep 14 2018
a(11)-a(21) from Martin Fuller, Mar 22 2025

A060223 Number of orbits of length n under the map whose periodic points are counted by A000670.

Original entry on oeis.org

1, 1, 1, 4, 18, 108, 778, 6756, 68220, 787472, 10224702, 147512052, 2340963570, 40527565260, 760095923082, 15352212731820, 332228417589720, 7668868648772700, 188085259069430744, 4884294069438337428, 133884389812214097774, 3863086904690670182596
Offset: 0

Views

Author

Thomas Ward, Mar 21 2001

Keywords

Comments

From Gus Wiseman, Oct 14 2016: (Start)
A finite sequence is normal if it spans an initial interval of positive integers. The *-product of two or more finite sequences is defined to be the lexicographically minimal sequence obtainable by shuffling the sequences together. For example, (2 2 1) * (2 1 3) = (2 1 2 2 1 3). If Q is the set of compositions (finite sequences of positive integers) then (Q,*) is an Abelian group freely generated by a set P of prime sequences. The number of normal prime sequences of length n is equal to a(n). See example 2 and Mathematica program 2.
If N is the species (endofunctor over the category of finite sets and permutations) of unlabeled necklaces and N(S) represents the set of all non-isomorphic primitive necklaces of length n=|S|, then the numbers |N(S)| are equal to the numbers a(|S|) for any finite set S. This is because the number of orderless *-factorizations (see A034691 and A269134) of any finite sequence q is equal to the number of multiset partitions (see A007716 and A255906) of the multiset of prime factors of q. (End)

Examples

			a(5) = 108 since A000670(5) is 541 and A000670(1) is 1, so there must be (541-1)/5 = 108 orbits of length 5.
From _Gus Wiseman_, Oct 14 2016: (Start)
The a(4) = 18 normal prime sequences are the columns:
[2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4]
[1 2 2 1 1 1 2 2 2 2 3 3 1 1 2 2 3 3]
[1 1 2 1 2 2 1 1 2 3 1 2 2 3 1 3 1 2]
[1 1 1 2 1 2 1 2 1 1 2 1 3 2 3 1 2 1].
The symmetric function A(x_1,x_2,x_3,...) expanded in terms of monomial symmetric functions m(y) (indexed by integer partitions y) is equal to:
A = m(1) +
    m(11) +
    (2*m(21) + 2*m(111) +
    (m(22) + 2*m(31) + 9*m(211) + 6*m(1111)) +
    (4*m(32) + 2*m(41) + 18*m(221) + 12*m(311) + 48*m(2111) + 24*m(11111)) +
    (3*m(33) + 4*m(42) + 2*m(51) + 14*m(222) + 60*m(321) + 15*m(411) + 180*m(2211) + 80*m(3111) + 300*m(21111) + 120*m(111111)) + ... (End)
		

Crossrefs

Cf. A000670, A034691 (multisets of compositions), A269134, A007716, A277427, A215474, A255906.
Row sums of A254040.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[#] HurwitzLerchPhi[1/2, -n/#, 0]/2 &] / n; a[0] = 1; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 30 2016 *)
    thufbin[{},b_List]:=b;thufbin[a_List,{}]:=a;thufbin[a_List]:=a;
    thufbin[{x_,a___},{y_,b___}]:=Switch[Ordering[If[x=!=y,{x,y},{thufbin[{a},{x,b}],thufbin[{x,a},{b}]}]],{1,2},Prepend[thufbin[{a},{y,b}],x],{2,1},Prepend[thufbin[{x,a},{b}],y]];
    thufbin[a_List,b_List,c__List]:=thufbin[a,thufbin[b,c]];
    priseqs[n_]:=Fold[Select,Tuples[Range[n],n],{Union[#]===Range[First[#]]&,Function[q,Select[Table[List[Take[q,{1,j}],Take[q,{j+1,n}]],{j,1,n-1}],thufbin@@Sort[#]===q&,1]==={}]}];
    Table[Length[priseqs[n]],{n,1,7}] (* Gus Wiseman, Oct 14 2016 *)
  • PARI
    \\ here b(n) is A000670
    b(n)={polcoeff(serlaplace(1/(2-exp(x+O(x*x^n)))), n)}
    a(n)={if(n<1, n==0, sumdiv(n, d, moebius(d)*b(n/d))/n)} \\ Andrew Howroyd, Dec 12 2017

Formula

a(n) = (1/n)* Sum_{d|n} mu(d)*A000670(n/d) for n > 0, where mu is A008683, the Moebius function. - Edited by Michel Marcus, Mar 30 2016
Let A = Sum_{q in P} Prod_i x_{q_i} = Sum_y c_y m(y) be the symmetric function whose coefficient of m(y) is equal to the number of permutations of the normal multiset [k]^y that belong to P, where the multiplicity of i in [k]^y is defined to be y_i. Then a(n) is the sum of c_y taken over all integer partitions of n. See example 3. - Gus Wiseman, Oct 14 2016
a(n) = Sum_{d|n} mu(d) * A019536(n/d) for n >= 1. - Petros Hadjicostas, Aug 19 2019

Extensions

More terms from Alois P. Heinz, Jan 23 2015

A317533 Regular triangle read rows: T(n,k) = number of non-isomorphic multiset partitions of size n and length k.

Original entry on oeis.org

1, 2, 2, 3, 4, 3, 5, 14, 9, 5, 7, 28, 33, 16, 7, 11, 69, 104, 74, 29, 11, 15, 134, 294, 263, 142, 47, 15, 22, 285, 801, 948, 599, 263, 77, 22, 30, 536, 2081, 3058, 2425, 1214, 453, 118, 30, 42, 1050, 5212, 9769, 9276, 5552, 2322, 761, 181, 42, 56, 1918, 12645, 29538, 34172, 23770, 11545, 4179, 1223, 267, 56
Offset: 1

Views

Author

Gus Wiseman, Jul 30 2018

Keywords

Examples

			Non-isomorphic representatives of the T(3,2) = 4 multiset partitions:
  {{1},{1,1}}
  {{1},{1,2}}
  {{1},{2,2}}
  {{1},{2,3}}
Triangle begins:
    1
    2    2
    3    4    3
    5   14    9    5
    7   28   33   16    7
   11   69  104   74   29   11
   15  134  294  263  142   47   15
		

Crossrefs

Row sums are A007716. First and last columns are both A000041.

Programs

  • Mathematica
    permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    c[p_List, q_List, k_] := SeriesCoefficient[1/Product[(1 - x^LCM[p[[i]], q[[j]]])^GCD[p[[i]], q[[j]]], {j, 1, Length[q]}, {i, 1, Length[p]}], {x, 0, k}];
    M[m_, n_, k_] := Module[{s = 0}, Do[Do[s += permcount[p]*permcount[q]*c[p, q, k], {q, IntegerPartitions[n]}], {p, IntegerPartitions[m]}]; s/(m!*n!)];
    T[n_, k_] := M[k, n, n] - M[k - 1, n, n];
    Table[T[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 08 2020, after Andrew Howroyd *)
  • PARI
    \\ See A318795 for definition of M.
    T(n,k)={M(k, n, n) - M(k-1, n, n)}
    for(n=1, 10, for(k=1, n, print1(T(n,k),", "));print) \\ Andrew Howroyd, Dec 28 2019
    
  • PARI
    \\ Faster version.
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, n)={1/prod(j=1, #q, (1-x^lcm(t, q[j]) + O(x*x^n))^gcd(t, q[j]))}
    G(m,n)={my(s=0); forpart(q=m, s+=permcount(q)*exp(sum(t=1, n, (K(q, t, n)-1)/t) + O(x*x^n))); s/m!}
    A(n,m=n)={my(p=sum(k=0, m, G(k,n)*y^k)*(1-y)); matrix(n, m, n, k, polcoef(polcoef(p, n, x), k, y))}
    { my(T=A(10)); for(n=1, #T, print(T[n,1..n])) } \\ Andrew Howroyd, Aug 30 2020

Extensions

Terms a(29) and beyond from Andrew Howroyd, Dec 28 2019

A318360 Number of set multipartitions (multisets of sets) of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 5, 3, 2, 1, 6, 1, 2, 3, 15, 1, 9, 1, 6, 3, 2, 1, 21, 4, 2, 16, 6, 1, 10, 1, 52, 3, 2, 4, 35, 1, 2, 3, 22, 1, 10, 1, 6, 19, 2, 1, 83, 5, 13, 3, 6, 1, 66, 4, 22, 3, 2, 1, 41, 1, 2, 20, 203, 4, 10, 1, 6, 3, 14, 1, 153, 1, 2, 26, 6, 5, 10, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 24 2018

Keywords

Examples

			The a(12) = 6 set multipartitions of {1,1,2,3}:
  {{1},{1,2,3}}
  {{1,2},{1,3}}
  {{1},{1},{2,3}}
  {{1},{2},{1,3}}
  {{1},{3},{1,2}}
  {{1},{1},{2},{3}}
		

Crossrefs

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    sqfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Table[Length[sqfacs[Times@@Prime/@nrmptn[n]]],{n,80}]
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    sig(n)={my(f=factor(n)); concat(vector(#f~, i, vector(f[i,2], j, primepi(f[i,1]))))}
    count(sig)={my(n=vecsum(sig), s=0); forpart(p=n, my(q=prod(i=1, #p, 1 + x^p[i] + O(x*x^n))); s+=prod(i=1, #sig, polcoef(q,sig[i]))*permcount(p)); s/n!}
    a(n)={if(n==1, 1, my(s=sig(n)); if(#s<=2, if(#s==1, 1, min(s[1],s[2])+1), count(sig(n))))} \\ Andrew Howroyd, Dec 10 2018

Formula

a(n) = A050320(A181821(n)).
From Andrew Howroyd, Dec 10 2018:(Start)
a(p) = 1 for prime(p).
a(prime(i)*prime(j)) = min(i,j) + 1.
a(prime(n)^k) = A188392(n,k). (End)

A318284 Number of multiset partitions of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 5, 9, 7, 7, 11, 11, 12, 16, 15, 15, 26, 22, 21, 29, 19, 30, 36, 31, 30, 66, 38, 42, 52, 56, 52, 47, 45, 57, 92, 77, 67, 77, 74, 101, 98, 135, 64, 137, 97, 176, 135, 109, 109, 118, 105, 231, 249, 97, 141, 181, 139, 297, 198, 385, 195, 269
Offset: 1

Views

Author

Gus Wiseman, Aug 23 2018

Keywords

Examples

			The a(12) = 11 multiset partitions of {1,1,2,3}:
  {{1,1,2,3}}
  {{1},{1,2,3}}
  {{2},{1,1,3}}
  {{3},{1,1,2}}
  {{1,1},{2,3}}
  {{1,2},{1,3}}
  {{1},{1},{2,3}}
  {{1},{2},{1,3}}
  {{1},{3},{1,2}}
  {{2},{3},{1,1}}
  {{1},{1},{2},{3}}
		

Crossrefs

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[facs[Times@@Prime/@nrmptn[n]]],{n,60}]
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    sig(n)={my(f=factor(n)); concat(vector(#f~, i, vector(f[i,2], j, primepi(f[i,1]))))}
    count(sig)={my(n=vecsum(sig), A=O(x*x^vecmax(sig)), s=0); forpart(p=n, my(q=1/prod(i=1, #p, 1 - x^p[i] + A)); s+=prod(i=1, #sig, polcoef(q,sig[i]))*permcount(p)); s/n!}
    a(n)={if(n==1, 1, my(s=sig(n)); if(#s==1, numbpart(s[1]), count(sig(n))))} \\ Andrew Howroyd, Dec 10 2018

Formula

a(n) = A001055(A181821(n)).
a(prime(n)^k) = A219727(n,k). - Andrew Howroyd, Dec 10 2018

A116539 Number of zero-one matrices with n ones and no zero rows or columns and with distinct rows, up to permutation of rows.

Original entry on oeis.org

1, 1, 2, 7, 28, 134, 729, 4408, 29256, 210710, 1633107, 13528646, 119117240, 1109528752, 10889570768, 112226155225, 1210829041710, 13640416024410, 160069458445202, 1952602490538038, 24712910192430620, 323964329622503527, 4391974577299578248, 61488854148194151940
Offset: 0

Views

Author

Vladeta Jovovic, Mar 27 2006

Keywords

Comments

Also the number of labeled hypergraphs spanning an initial interval of positive integers with edge-sizes summing to n. - Gus Wiseman, Dec 18 2018

Examples

			From _Gus Wiseman_, Dec 18 2018: (Start)
The a(3) = 7 edge-sets:
    {{1,2,3}}
   {{1},{1,2}}
   {{2},{1,2}}
   {{1},{2,3}}
   {{2},{1,3}}
   {{3},{1,2}}
  {{1},{2},{3}}
Inequivalent representatives of the a(4) = 28 0-1 matrices:
  [1111]
.
  [100][1000][010][0100][001][0010][0001][110][110][1100][101][1010][1001]
  [111][0111][111][1011][111][1101][1110][101][011][0011][011][0101][0110]
.
  [10][100][100][1000][100][100][1000][1000][010][010][0100][0100][0010]
  [01][010][010][0100][001][001][0010][0001][001][001][0010][0001][0001]
  [11][101][011][0011][110][011][0101][0110][110][101][1001][1010][1100]
.
  [1000]
  [0100]
  [0010]
  [0001]
(End)
		

Crossrefs

Binary matrices with distinct rows and columns, various versions: A059202, A088309, A088310, A088616, A089673, A089674, A093466, A094000, A094223, A116532, A116539, A181230, A259763
Row sums of A326914 and of A326962.

Programs

  • Maple
    b:= proc(n, i, k) b(n, i, k):=`if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j,
          min(n-i*j, i-1), k)*binomial(binomial(k, i), j), j=0..n/i)))
        end:
    a:= n-> add(add(b(n$2, i)*(-1)^(k-i)*binomial(k, i), i=0..k), k=0..n):
    seq(a(n), n=0..23);  # Alois P. Heinz, Sep 13 2019
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, Min[n - i*j, i - 1], k]*Binomial[Binomial[k, i], j], {j, 0, n/i}]]];
    a[n_] := Sum[Sum[b[n, n, i]*(-1)^(k-i)*Binomial[k, i], {i, 0, k}], {k, 0, n}];
    a /@ Range[0, 23] (* Jean-François Alcover, Feb 25 2020, after Alois P. Heinz *)

Extensions

a(0)=1 prepended and more terms added by Alois P. Heinz, Sep 13 2019

A275024 Total weight of the n-th twice-prime-factored multiset partition.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 1, 3, 2, 3, 2, 3, 1, 2, 3, 4, 3, 3, 2, 4, 2, 3, 2, 4, 4, 2, 3, 3, 1, 4, 3, 5, 3, 4, 3, 4, 1, 3, 2, 5, 2, 3, 2, 4, 4, 3, 4, 5, 2, 5, 4, 3, 1, 4, 4, 4, 3, 2, 3, 5, 1, 4, 3, 6, 3, 4, 3, 5, 3, 4, 2, 5, 2, 2, 5, 4, 3, 3, 1, 6, 4, 3, 4, 4, 5, 3, 2, 5, 2, 5, 2, 4, 4, 5, 4, 6, 2, 3, 4, 6, 3, 5, 3, 4
Offset: 1

Views

Author

Gus Wiseman, Nov 12 2016

Keywords

Comments

A multiset partition is a finite multiset of finite nonempty multisets of positive integers. The n-th twice-prime-factored multiset partition is constructed by factoring n into prime numbers and then factoring each prime index plus 1 into prime numbers. This produces a unique multiset of multisets of prime numbers which can then be normalized (see example) to produce each possible multiset partition as n ranges over all positive integers.

Examples

			The sequence of multiset partitions begins:
(), ((1)), ((2)), ((1)(1)), ((11)), ((1)(2)), ((3)),
((1)(1)(1)), ((2)(2)), ((1)(11)), ((12)), ((1)(1)(2)),
((4)), ((1)(3)), ((2)(11)), ((1)(1)(1)(1)), ((111)),
((1)(2)(2)), ((22)), ((1)(1)(11)), ((2)(3)), ((1)(12)),
((13)), ((1)(1)(1)(2)), ((11)(11)), ((1)(4)), ((2)(2)(2)),
((1)(1)(3)), ((5)), ((1)(2)(11)), ((112)), ((1)(1)(1)(1)(1)),
((2)(12)), ((1)(111)), ((3)(11)), ((1)(1)(2)(2)), ((6)), ...
		

Crossrefs

Programs

  • Mathematica
    Table[Total[Cases[FactorInteger[n],{p_,k_}:>k*PrimeOmega[PrimePi[p]+1]]],{n,1,100}]

Formula

If prime(k) has weight equal to the number of prime factors (counting multiplicity) of k+1, then a(n) is the sum of weights over all prime factors (counting multiplicity) of n.

A305936 Irregular triangle whose n-th row is the multiset spanning an initial interval of positive integers with multiplicities equal to the n-th row of A296150 (the prime indices of n in weakly decreasing order).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 2, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 2, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 23 2018

Keywords

Examples

			Row 90 is {1,1,1,2,2,3,3,4} because 90 = prime(3)*prime(2)*prime(2)*prime(1).
Triangle begins:
   1:
   2:  1
   3:  1  1
   4:  1  2
   5:  1  1  1
   6:  1  1  2
   7:  1  1  1  1
   8:  1  2  3
   9:  1  1  2  2
  10:  1  1  1  2
  11:  1  1  1  1  1
  12:  1  1  2  3
  13:  1  1  1  1  1  1
		

Crossrefs

Row lengths are A056239. Number of distinct elements in row n is A001222(n). Number of distinct multiplicities in row n is A001221(n).

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Array[nrmptn,30]
Showing 1-10 of 99 results. Next