A117066 Partial sums of cupolar numbers (1/3)*(n+1)*(5*n^2+7*n+3) (A096000).
1, 11, 48, 140, 325, 651, 1176, 1968, 3105, 4675, 6776, 9516, 13013, 17395, 22800, 29376, 37281, 46683, 57760, 70700, 85701, 102971, 122728, 145200, 170625, 199251, 231336, 267148, 306965, 351075, 399776, 453376, 512193, 576555, 646800, 723276, 806341
Offset: 1
Examples
For n=6, 9*a(6) = 6^3 + 7^3 + 8^3 + 9^3 + 10^3 + 11^3 +12^3 = 9*651. - _Bruno Berselli_, Apr 01 2014
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
GAP
List([1..40], n-> n^2*(n+1)*(5*n+1)/12); # G. C. Greubel, Jul 05 2019
-
Magma
[n^2*(n+1)*(5*n+1)/12: n in [1..40]]; // Vincenzo Librandi, Apr 16 2018
-
Maple
a:=n->sum ((n+j)^3, j=0..n): seq(a(n)/9, n=1..40);# Zerinvary Lajos, Dec 17 2008
-
Mathematica
Table[Sum[n i (n + i), {i, 0, n}]/2, {n, 40}] (* Vladimir Joseph Stephan Orlovsky, Jun 03 2011 *) Accumulate[Table[((n+1)(5n^2+7n+3))/3,{n,0,50}]] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,11,48,140,325},50] (* Harvey P. Dale, Jan 03 2024 *)
-
PARI
my(x='x+O('x^40)); Vec(x*(3*x^2+6*x+1)/(1-x)^5) \\ G. C. Greubel, Jul 19 2017
-
PARI
a(n) = n^2*(n+1)*(5*n+1)/12; \\ Altug Alkan, Apr 16 2018
-
Sage
[n^2*(n+1)*(5*n+1)/12 for n in (1..40)] # G. C. Greubel, Jul 05 2019
Formula
a(n) = Sum_{i=1..n} A096000(i).
a(n) = Sum_{i=1..n} (1/3)*(i+1)*(5*i^2+7*i+3).
a(n) = Sum_{i=1..n} (1/2)*(Q(i) + 3*i^2 + 3*i + 1), where Q(i) are the cuboctahedral numbers (A005902).
a(n) = Sum_{i=0..n} A073254(n,i)*i. - Peter Luschny, Oct 29 2011
G.f.: x*(1+6*x+3*x^2) / (1-x)^5. - Colin Barker, May 08 2013
9*a(n) = Sum_{i=0..n} (n+i)^3, see Maple code by Zerinvary Lajos. - Bruno Berselli, Apr 01 2014
a(n) = n^2*(n+1)*(5*n+1)/12. - Vaclav Kotesovec, Jan 03 2017
E.g.f.: (x/12)*(12 + 54*x + 36*x^2 + 5*x^3)*exp(x). - G. C. Greubel, Jul 19 2017
Another identity: ..., a(4) = (1/2)*(7*(2+4+6+8)+5*(4+6+8)+3*(6+8)+1*(8)) = 140, a(5) = (1/2)*(9*(2+4+6+8+10)+7*(4+6+8+10)+5*(6+8+10)+3*(8+10)+1*(10)) = 325, ... - J. M. Bergot, Aug 25 2022
Extensions
Terms corrected by Colin Barker, May 08 2013
Comments