cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117066 Partial sums of cupolar numbers (1/3)*(n+1)*(5*n^2+7*n+3) (A096000).

Original entry on oeis.org

1, 11, 48, 140, 325, 651, 1176, 1968, 3105, 4675, 6776, 9516, 13013, 17395, 22800, 29376, 37281, 46683, 57760, 70700, 85701, 102971, 122728, 145200, 170625, 199251, 231336, 267148, 306965, 351075, 399776, 453376, 512193, 576555, 646800, 723276, 806341
Offset: 1

Views

Author

Jonathan Vos Post, Apr 17 2006

Keywords

Comments

Consider the partitions of 2n into two parts (p,q) where p <= q. Then a(n) is the total volume of the family of rectangular prisms with dimensions p, p and q. - Wesley Ivan Hurt, Apr 15 2018

Examples

			For n=6, 9*a(6) = 6^3 + 7^3 + 8^3 + 9^3 + 10^3 + 11^3 +12^3 = 9*651. - _Bruno Berselli_, Apr 01 2014
		

Crossrefs

Programs

  • GAP
    List([1..40], n-> n^2*(n+1)*(5*n+1)/12); # G. C. Greubel, Jul 05 2019
  • Magma
    [n^2*(n+1)*(5*n+1)/12: n in [1..40]]; // Vincenzo Librandi, Apr 16 2018
    
  • Maple
    a:=n->sum ((n+j)^3, j=0..n): seq(a(n)/9, n=1..40);# Zerinvary Lajos, Dec 17 2008
  • Mathematica
    Table[Sum[n i (n + i), {i, 0, n}]/2, {n, 40}] (* Vladimir Joseph Stephan Orlovsky, Jun 03 2011 *)
    Accumulate[Table[((n+1)(5n^2+7n+3))/3,{n,0,50}]] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,11,48,140,325},50] (* Harvey P. Dale, Jan 03 2024 *)
  • PARI
    my(x='x+O('x^40)); Vec(x*(3*x^2+6*x+1)/(1-x)^5) \\ G. C. Greubel, Jul 19 2017
    
  • PARI
    a(n) = n^2*(n+1)*(5*n+1)/12; \\ Altug Alkan, Apr 16 2018
    
  • Sage
    [n^2*(n+1)*(5*n+1)/12 for n in (1..40)] # G. C. Greubel, Jul 05 2019
    

Formula

a(n) = Sum_{i=1..n} A096000(i).
a(n) = Sum_{i=1..n} (1/3)*(i+1)*(5*i^2+7*i+3).
a(n) = Sum_{i=1..n} (1/2)*(Q(i) + 3*i^2 + 3*i + 1), where Q(i) are the cuboctahedral numbers (A005902).
a(n) = Sum_{i=0..n} A073254(n,i)*i. - Peter Luschny, Oct 29 2011
G.f.: x*(1+6*x+3*x^2) / (1-x)^5. - Colin Barker, May 08 2013
9*a(n) = Sum_{i=0..n} (n+i)^3, see Maple code by Zerinvary Lajos. - Bruno Berselli, Apr 01 2014
a(n) = n^2*(n+1)*(5*n+1)/12. - Vaclav Kotesovec, Jan 03 2017
E.g.f.: (x/12)*(12 + 54*x + 36*x^2 + 5*x^3)*exp(x). - G. C. Greubel, Jul 19 2017
Another identity: ..., a(4) = (1/2)*(7*(2+4+6+8)+5*(4+6+8)+3*(6+8)+1*(8)) = 140, a(5) = (1/2)*(9*(2+4+6+8+10)+7*(4+6+8+10)+5*(6+8+10)+3*(8+10)+1*(10)) = 325, ... - J. M. Bergot, Aug 25 2022

Extensions

Terms corrected by Colin Barker, May 08 2013