cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A052709 Expansion of g.f. (1-sqrt(1-4*x-4*x^2))/(2*(1+x)).

Original entry on oeis.org

0, 1, 1, 3, 9, 31, 113, 431, 1697, 6847, 28161, 117631, 497665, 2128127, 9183489, 39940863, 174897665, 770452479, 3411959809, 15181264895, 67833868289, 304256253951, 1369404661761, 6182858317823, 27995941060609, 127100310290431, 578433619525633, 2638370120138751
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

A simple context-free grammar.
Number of lattice paths from (0,0) to (2n-2,0) that stay (weakly) in the first quadrant and such that each step is either U=(1,1), D=(1,-1), or L=(3,1). Equivalently, underdiagonal lattice paths from (0,0) to (n-1,n-1) and such that each step is either (1,0), (0,1), or (2,1). E.g., a(4)=9 because in addition to the five Dyck paths from (0,0) to (6,0) [UDUDUD, UDUUDD, UUDDUD, UUDUDD, UUUDDD] we have LDUD, LUDD, ULDD and UDLD. - Emeric Deutsch, Dec 21 2003
Hankel transform of a(n+1) is A006125(n+1). - Paul Barry, Apr 01 2007
Also, a(n+1) is the number of walks from (0,0) to (n,0) using steps (1,1), (1,-1) and (0,-1). See the U(n,k) array in A071943, where A052709(n+1) = U(n,0). - N. J. A. Sloane, Mar 29 2013
Diagonal sums of triangle in A085880. - Philippe Deléham, Nov 15 2013
From Gus Wiseman, Jun 17 2021: (Start)
Conjecture: For n > 0, also the number of sequences of length n - 1 covering an initial interval of positive integers and avoiding three terms (..., x, ..., y, ..., z, ...) such that x <= y <= z. The version avoiding the strict pattern (1,2,3) is A226316. Sequences covering an initial interval are counted by A000670. The a(1) = 1 through a(4) = 9 sequences are:
() (1) (1,1) (1,2,1)
(1,2) (1,3,2)
(2,1) (2,1,1)
(2,1,2)
(2,1,3)
(2,2,1)
(2,3,1)
(3,1,2)
(3,2,1)
(End)

Crossrefs

Programs

  • Magma
    [0] cat [(&+[Binomial(n,k+1)*Binomial(2*k,n-1): k in [0..n-1]])/n: n in [1..30]]; // G. C. Greubel, May 30 2022
    
  • Maple
    spec := [S,{C=Prod(B,Z),S=Union(B,C,Z),B=Prod(S,S)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    InverseSeries[Series[(y-y^2)/(1+y^2), {y, 0, 24}], x] (* then A(x)= y(x) *) (* Len Smiley, Apr 12 2000 *)
    CoefficientList[Series[(1 -Sqrt[1 -4x -4x^2])/(2(1+x)), {x, 0, 33}], x] (* Vincenzo Librandi, Feb 12 2016 *)
  • PARI
    a(n)=polcoeff((1-sqrt(1-4*x*(1+x+O(x^n))))/2/(1+x),n)
    
  • SageMath
    [sum(binomial(k, n-k-1)*catalan_number(k) for k in (0..n-1)) for n in (0..30)] # G. C. Greubel, May 30 2022

Formula

a(n) + a(n-1) = A025227(n).
a(n) = Sum_{k=0..floor((n-1)/2)} (2*n-2-2*k)!/(k!*(n-k)!*(n-1-2*k)!). - Emeric Deutsch, Nov 14 2001
D-finite with recurrence: n*a(n) = (3*n-6)*a(n-1) + (8*n-18)*a(n-2) + (4*n-12)*a(n-3), n>2. a(1)=a(2)=1.
a(n) = b(1)*a(n-1) + b(2)*a(n-2) + ... + b(n-1)*a(1) for n>1 where b(n)=A025227(n).
G.f.: A(x) = x/(1-(1+x)*A(x)). - Paul D. Hanna, Aug 16 2002
G.f.: A(x) = x/(1-z/(1-z/(1-z/(...)))) where z=x+x^2 (continued fraction). - Paul D. Hanna, Aug 16 2002; revised by Joerg Arndt, Mar 18 2011
a(n+1) = Sum_{k=0..n} Catalan(k)*binomial(k, n-k). - Paul Barry, Feb 22 2005
From Paul Barry, Mar 14 2006: (Start)
G.f. is x*c(x*(1+x)) where c(x) is the g.f. of A000108.
Row sums of A117434. (End)
a(n+1) = (1/(2*Pi))*Integral_{x=2-2*sqrt(2)..2+2*sqrt(2)} x^n*(4+4x-x^2)/(2*(1+x)). - Paul Barry, Apr 01 2007
From Gary W. Adamson, Jul 22 2011: (Start)
For n>0, a(n) is the upper left term in M^(n-1), where M is an infinite square production matrix as follows:
1, 1, 0, 0, 0, 0, ...
2, 1, 1, 0, 0, 0, ...
2, 2, 1, 1, 0, 0, ...
2, 2, 2, 1, 1, 0, ...
2, 2, 2, 2, 1, 1, ...
... (End)
G.f.: x*Q(0), where Q(k) = 1 + (4*k+1)*x*(1+x)/(k+1 - x*(1+x)*(2*k+2)*(4*k+3)/(2*x*(1+x)*(4*k+3) + (2*k+3)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 14 2013
a(n) ~ sqrt(2-sqrt(2))*2^(n-1/2)*(1+sqrt(2))^(n-1)/(n^(3/2)*sqrt(Pi)). - Vaclav Kotesovec, Jun 29 2013
a(n+1) = Sum_{k=0..floor(n/2)} A085880(n-k,k). - Philippe Deléham, Nov 15 2013

Extensions

Better g.f. and recurrence from Michael Somos, Aug 03 2000
More terms from Larry Reeves (larryr(AT)acm.org), Oct 03 2000

A117433 Number of planar partitions of n with all part sizes distinct.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 9, 11, 15, 21, 35, 41, 59, 75, 103, 149, 187, 243, 321, 413, 527, 735, 895, 1165, 1467, 1885, 2335, 2997, 3853, 4765, 5977, 7473, 9269, 11531, 14255, 17537, 22201, 26897, 33233, 40613, 50027, 60637, 74459, 89963, 109751, 134407, 162117, 195859
Offset: 0

Views

Author

Franklin T. Adams-Watters, Mar 16 2006, Apr 01 2008

Keywords

Comments

Matches A072706 for n < 10, since a unimodal composition into distinct parts can be placed uniquely as a hook. Starting with n = 10, additional partitions are possible (starting with [4,3|2,1] and [4,2|3,1]).

Examples

			From _Gus Wiseman_, Nov 15 2018: (Start)
The a(10) = 35 strict plane partitions (A = 10):
  A  64  73  82  532  91  541  631  721  4321
.
  9  54  63  72  432  8  53  71  431  7  43  52  61  421  6  42  51
  1  1   1   1   1    2  2   2   2    3  21  3   3   3    4  31  4
.
  7  6  5  43  42  5  41
  2  3  4  2   3   3  3
  1  1  1  1   1   2  2
.
  4
  3
  2
  1
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) b(n, i):= `if`(n=0, [1], `if`(i<1, [], zip((x, y)
          -> x+y, b(n, i-1), `if`(i>n, [], [0, b(n-i, i-1)[]]), 0)))
        end:
    g:= proc(n) g(n):= `if`(n<2, 1, (n-1)*g(n-2) +g(n-1)) end:
    a:= proc(n) b(n, n); add(%[i]*g(i-1), i=1..nops(%)) end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Nov 18 2012
  • Mathematica
    prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
    Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],UnsameQ@@DeleteCases[Join@@prs2mat[#],0],And@@(OrderedQ[#,Greater]&/@prs2mat[#]),And@@(OrderedQ[#,Greater]&/@Transpose[prs2mat[#]])]&]],{n,5}] (* Gus Wiseman, Nov 15 2018 *)
    zip[f_, x_List, y_List, z_] := With[{m = Max[Length[x], Length[y]]}, f[PadRight[x, m, z], PadRight[y, m, z]]];
    b[n_, i_] := b[n, i] = If[n == 0, {1}, If[i < 1, {}, zip[Plus, b[n, i - 1], If[i > n, {}, Join[{0}, b[n - i, i - 1]]], 0]]];
    g[n_] := g[n] = If[n < 2, 1, (n - 1)*g[n - 2] + g[n - 1]];
    a[n_] := With[{bn = b[n, n]}, Sum[bn[[i]]*g[i - 1], {i, 1, Length[bn]}]];
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Dec 05 2023, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=1..floor((sqrt(8*n+1)-1)/2)} A000085(k)*A008289(n,k).

A115178 Expansion of c(x^2+x^3), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 0, 1, 1, 2, 4, 7, 15, 29, 61, 126, 266, 566, 1212, 2619, 5685, 12419, 27247, 60049, 132847, 294931, 656877, 1467258, 3286218, 7378240, 16603458, 37441990, 84599854, 191501532, 434224404, 986161959, 2243009869, 5108859821
Offset: 0

Views

Author

Paul Barry, Mar 14 2006

Keywords

Comments

Diagonal sums of number triangle A117434.
a(n) = number of Motzkin n-paths (A001006) in which every flatstep (F) is followed by a downstep (D). For example, a(5)=4 counts UDUFD, UFDUD, UUDFD, UUFDD. - David Callan, Jun 07 2006
a(n) = number of lattice paths in the first quadrant from (0,0) to (n,0) using only steps U1=(1,1), U2=(2,1) and D=(1,-1). E.g. a(6)=7 because we have U1DU1DU1D, U1U1U1DDD, U1U1DU1DD, U1DU1U1DD, U1U1DDU1D, U2DU2D and U2U2DD. - José Luis Ramírez Ramírez, May 27 2013

Examples

			1 + x^2 + x^3 + 2*x^4 + 4*x^5 + 7*x^6 + 15*x^7 + 29*x^8 + 61*x^9 + ...
		

Crossrefs

Cf. A007477.

Programs

  • Mathematica
    Table[Sum[Binomial[k, n - 2*k]*CatalanNumber[k], {k, 0, Floor[n/2]}], {n, 0, 50}] (* G. C. Greubel, Feb 03 2017 *)
  • PARI
    {a(n) = local(A); A = O(x^0); for( k=0, n\5, A = 1 / (1 - x^2 / (1 - x / (1 - x^2 * A)))); polcoeff( A, n)} /* Michael Somos, May 12 2012 */

Formula

a(n) = Sum_{k=0..floor(n/2)} C(k)*C(k,n-2k).
D-finite with recurrence (n+2)*a(n) +(n+2)*a(n-1) +4*(1-n)*a(n-2) +2*(7-4*n)*a(n-3) +2*(5-2*n)*a(n-4)=0. - R. J. Mathar, Nov 15 2011
G.f. A(x) satisfies A(x) = 1 / (1 - x^2 / (1 - x / (1 - x^2 * A(x)))). - Michael Somos, May 12 2012
G.f.: (1-sqrt(1-4*z^2*(1+z)))/(2*z^2*(1+z)). - José Luis Ramírez Ramírez, May 27 2013
a(n) ~ sqrt(3 - 1/9*(-2 + (19-3*sqrt(33))^(1/3) + (19+3*sqrt(33))^(1/3))^2) * (((-2 + (19-3*sqrt(33))^(1/3) + (19+3*sqrt(33))^(1/3)) * (4 + (19-3*sqrt(33))^(1/3) + (19+3*sqrt(33))^(1/3)))/9)^n /(n^(3/2)*sqrt(Pi)). - Vaclav Kotesovec, Sep 16 2013

A115179 Expansion of c(x*y*(1-x)), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 0, 1, 0, -1, 2, 0, 0, -4, 5, 0, 0, 2, -15, 14, 0, 0, 0, 15, -56, 42, 0, 0, 0, -5, 84, -210, 132, 0, 0, 0, 0, -56, 420, -792, 429, 0, 0, 0, 0, 14, -420, 1980, -3003, 1430, 0, 0, 0, 0, 0, 210, -2640, 9009, -11440, 4862, 0, 0, 0, 0, 0, -42, 1980, -15015, 40040, -43758, 16796
Offset: 0

Views

Author

Paul Barry, Mar 14 2006

Keywords

Comments

Since C(x*(1-x)) = 1/(1-x), the row sums of this triangle are (1,1,1,...). This establishes the identity Sum_{k=0..n} T(n, k) = Sum_{k=0..n} (-1)^(n-k)*A000108(k)*binomial(k,n-k) = 1.

Examples

			Triangle begins
  1;
  0,  1;
  0, -1,  2;
  0,  0, -4,   5;
  0,  0,  2, -15,  14;
  0,  0,  0,  15, -56,   42;
  0,  0,  0,  -5,  84, -210,  132;
  0,  0,  0,   0, -56,  420, -792, 429;
		

Crossrefs

Programs

  • Magma
    [(-1)^(n+k)*Binomial(k, n-k)*Catalan(k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 31 2021
    
  • Mathematica
    Table[(-1)^(n+k)*CatalanNumber[k]*Binomial[k, n-k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 31 2021 *)
  • Sage
    flatten([[(-1)^(n+k)*binomial(k, n-k)*catalan_number(k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 31 2021

Formula

T(n, k) = (-1)^(n-k)*binomial(k, n-k)*Catalan(k).
Sum_{k=0..n} T(n, k) = A000012(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = (-1)^n*A115178(n) (upward diagonal sums).
T(n, k) = (-1)^(n+k)*A117434(n, k).
Showing 1-4 of 4 results.