Original entry on oeis.org
2, 11, 1361, 2521008887, 16022236204009818131831320183, 4113101149215104800030529537915953170486139623539759933135949994882770404074832568499
Offset: 1
a(3) = 1361 = 11^3 + 30 = a(2)^3 + 30 and there is no smaller k such that a(2)^3 + k is prime. - _Jonathan Vos Post_, May 05 2006
- Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 8.
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.13, p. 130.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 137.
- Robert G. Wilson v, Table of n, a(n) for n = 1..8
- Chris K. Caldwell, Mills' Theorem - a generalization.
- Chris K. Caldwell and Yuanyou Chen, Determining Mills' Constant and a Note on Honaker's Problem, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.1.
- Steven R. Finch, Mills' Constant. [Broken link]
- Steven R. Finch, Mills' Constant. [From the Wayback machine]
- Dylan Fridman, Juli Garbulsky, Bruno Glecer, James Grime and Massi Tron Florentin, A Prime-Representing Constant, Amer. Math. Monthly, Vol. 126, No. 1 (2019), pp. 72-73; ResearchGate link, arXiv preprint, arXiv:2010.15882 [math.NT], 2020.
- James Grime and Brady Haran, Awesome Prime Number Constant, Numberphile video, 2013.
- Brian Hayes, Pumping the Primes, bit-player, Aug 19 2015.
- Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
- William H. Mills, A prime-representing function, Bull. Amer. Math. Soc., Vol. 53, No. 6 (1947), p. 604; Errata, ibid., Vol. 53, No 12 (1947), p. 1196.
- Simon Plouffe, The calculation of p(n) and pi(n), arXiv:2002.12137 [math.NT], 2020.
- László Tóth, A Variation on Mills-Like Prime-Representing Functions, arXiv:1801.08014 [math.NT], 2018.
- Juan L. Varona, A Couple of Transcendental Prime-Representing Constants, arXiv:2012.11750 [math.NT], 2020.
- Eric Weisstein's World of Mathematics, Mills' Prime.
- Eric Weisstein's World of Mathematics, Prime Formulas.
- Eric W. Weisstein, Table of n, a(n) for n = 1..13.
Cf.
A001358,
A055496,
A076656,
A006992,
A005384,
A005385,
A118908,
A118909,
A118910,
A118911,
A118912,
A118913.
Cf.
A224845 (integer lengths of Mills primes).
Cf.
A108739 (sequence of offsets b_n associated with Mills primes).
Cf.
A051021 (decimal expansion of Mills constant).
-
floor(A^(3^n), n=1..10); # A is Mills's constant: 1.306377883863080690468614492602605712916784585156713644368053759966434.. (A051021).
-
p = 1; Table[p = NextPrime[p^3], {6}] (* T. D. Noe, Sep 24 2008 *)
NestList[NextPrime[#^3] &, 2, 5] (* Harvey P. Dale, Feb 28 2012 *)
-
a(n)=if(n==1, 2, nextprime(a(n-1)^3)) \\ Charles R Greathouse IV, Jun 23 2017
-
apply( {A051254(n, p=2)=while(n--, p=nextprime(p^3));p}, [1..6]) \\ M. F. Hasler, Sep 11 2024
A118908
a(1) = 4; a(n) is greatest semiprime < a(n-1)^2.
Original entry on oeis.org
4, 15, 221, 48839, 2385247913, 5689407606470855563, 32369358912568429679140929317208046943, 1047775396410673232345014594095988998399127191704501568910205139392491645247
Offset: 1
a(6) = 32369358912568429679140929317208046943 = 1816568472934912211 * 17818958874845686213 = 5689407606470855563^2 - 26 < a(5)^2.
A118910
a(1) = 2; a(n) is greatest prime < a(n-1)^3.
Original entry on oeis.org
2, 7, 337, 38272739, 56062005704198360319209, 176199995814327287356671209104585864397055039072110696028654438846269
Offset: 1
a(5) = 62343227157465615355481 = a(4)^3 - 32 = 39651817^3 - 32 and there is no k < 32 such that 39651817^3 - k is prime.
-
a=2; Join[{2}, Table[a=a^3; While[ !PrimeQ[a], a=a-1]; a, {5}]] (* T. D. Noe, Nov 15 2006 *)
A087147
Numbers k such that k! + (k+1)! + 1 is prime.
Original entry on oeis.org
0, 3, 7, 9, 67, 291, 1343, 6984, 12861
Offset: 1
3 is in the sequence because 3!+4!+1=31 is prime.
- H. Dubner, Factorial and primorial primes, J. Rec. Math., 19 (No.3, 1987)
-
v={}; Do[If[PrimeQ[n!+(n+1)!+1], v=Append[v, n]; Print[v]], {n, 1800}]; v
Select[Range[0,25000],PrimeQ[#!+(#+1)!+1]&] (* Robert Price, Aug 26 2015 *)
-
isok(k) = ispseudoprime(k!+(k+1)!+1); \\ Altug Alkan, Mar 22 2018
A118909
a(1) = 4; a(n) is least semiprime > a(n-1)^2.
Original entry on oeis.org
4, 21, 445, 198026, 39214296677, 1537761063871773242347, 2364709089560047865452947255794201194068433, 5591849078247910476736920566826713466552016538943524658263883555662554776622687075541
Offset: 1
a(8) = a(7)^2 + 52 and there is no smaller k such that a(7)^2 + k is semiprime.
-
nxt[n_]:=Module[{sp=n^2+1},While[PrimeOmega[sp]!=2,sp++];sp]; NestList[nxt,4,7] (* Harvey P. Dale, Oct 22 2012 *)
-
from itertools import accumulate
from sympy.ntheory.factor_ import primeomega
def nextsemiprime(n):
while primeomega(n + 1) != 2: n += 1
return n + 1
def f(anm1, _): return nextsemiprime(anm1**2)
print(list(accumulate([4]*6, f))) # Michael S. Branicky, Apr 21 2021
A118912
a(1) = 2; a(n) is greatest prime < a(n-1)^4.
Original entry on oeis.org
2, 13, 28559, 665230244078823349, 195833931687186822327230545227550596864953022841534058316595001440791433
Offset: 1
a(1) = 2, by definition.
a(2) = 13 = 2^4 - 3.
a(3) = 28559 = 13^4 - 2.
a(4) = 665230244078823349 = 28559^4 - 12.
a(5) = 195833931687186822327230545227550596864953022841534058316595001440791433 = 665230244078823349^4 - 168.
a(6) is too large to include.
A125174
Primes of the form k! + (k+1)! - 1.
Original entry on oeis.org
2, 7, 29, 839, 3991679, 93405311999, 1394852659199, 6758061133823999, 315777214062132212662271999999, 9146650338351415815045119999999, 303916116658416027343136804044799999999, 836313165329095177704251551336018791628799999999
Offset: 1
0!+1!-1 = 1 is not prime, 1!+2!-1 = 2 is prime, 2!+3!-1 = 7 is prime, 3!+4!-1 = 29 is prime, 4!+5!-1 = 143 = 11*13 is not prime.
Cf.
A087146 (values of k),
A118913 (primes of the form k! + (k+1)! + 1).
-
Select[Table[n!+(n+1)!-1,{n,110}],PrimeQ] (* James C. McMahon, Dec 11 2024 *)
-
for(n=0,35,if(isprime(a=n!+(n+1)!-1),print1(a,",")))
Showing 1-7 of 7 results.
Comments