cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A056115 a(n) = n*(n+11)/2.

Original entry on oeis.org

0, 6, 13, 21, 30, 40, 51, 63, 76, 90, 105, 121, 138, 156, 175, 195, 216, 238, 261, 285, 310, 336, 363, 391, 420, 450, 481, 513, 546, 580, 615, 651, 688, 726, 765, 805, 846, 888, 931, 975, 1020, 1066, 1113, 1161, 1210, 1260, 1311, 1363, 1416, 1470, 1525
Offset: 0

Views

Author

Barry E. Williams, Jul 04 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Third column of Pascal (1, 6) triangle A096956.

Programs

  • GAP
    List([0..50], n-> n*(n+11)/2 ); # G. C. Greubel, Jan 18 2020
  • Magma
    [n*(n+11)/2: n in [0..50]]; // G. C. Greubel, Jan 18 2020
    
  • Mathematica
    ((2*Range[0,50]+11)^2 -11^2)/8 (* G. C. Greubel, Jan 18 2020 *)
  • PARI
    a(n)=n*(n+11)/2; \\ Joerg Arndt, Oct 25 2014
    
  • Sage
    [n*(n+11)/2 for n in (0..50)] # G. C. Greubel, Jan 18 2020
    

Formula

G.f.: x*(6-5*x)/(1-x)^3.
a(n) = A000096(n) + 4*A001477(n) = A056000(n) + A001477(n) = A056119(n) - A001477(n). - Zerinvary Lajos, Oct 01 2006
a(n) = A126890(n,5) for n>4. - Reinhard Zumkeller, Dec 30 2006
Equals A119412/2. - Zerinvary Lajos, Feb 12 2007
If we define f(n,i,a) = Sum_{k=0..n-i} ( binomial(n,k)*stirling1(n-k,i) *Product_{j=0..k-1} (-a-j) ), then a(n) = -f(n,n-1,6), for n>=1. - Milan Janjic, Dec 20 2008
a(n) = a(n-1) + n + 5 (with a(0)=0). - Vincenzo Librandi, Aug 07 2010
Sum_{n>=1} 1/a(n) = 83711/152460. - R. J. Mathar, Jul 14 2012
a(n) = 6*n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
E.g.f.: x*(12 + x)*exp(x)/2. - G. C. Greubel, Jan 18 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/11 - 20417/152460. - Amiram Eldar, Jan 10 2021

A164012 Zero together with row 12 of the array in A163280.

Original entry on oeis.org

0, 31, 62, 87, 124, 115, 186, 147, 232, 207, 250, 242, 372, 312, 364, 405, 464, 476, 558, 570, 640, 693, 726, 782, 888, 925, 962, 1026, 1092, 1160, 1230, 1302, 1376, 1452, 1530, 1610, 1692, 1776, 1862, 1950, 2040, 2132, 2226, 2322, 2420, 2520, 2622, 2726
Offset: 0

Views

Author

Omar E. Pol, Aug 08 2009

Keywords

Crossrefs

Formula

Conjecture: a(n) = A119412(n), n > 36. [R. J. Mathar, Jul 31 2010]

Extensions

Terms beyond a(12) from R. J. Mathar, Jul 31 2010

A243138 a(n) = n^2 + 15*n + 13.

Original entry on oeis.org

13, 29, 47, 67, 89, 113, 139, 167, 197, 229, 263, 299, 337, 377, 419, 463, 509, 557, 607, 659, 713, 769, 827, 887, 949, 1013, 1079, 1147, 1217, 1289, 1363, 1439, 1517, 1597, 1679, 1763, 1849, 1937, 2027, 2119, 2213, 2309, 2407, 2507, 2609, 2713, 2819, 2927, 3037, 3149
Offset: 0

Views

Author

Vincenzo Librandi, Jun 02 2014

Keywords

Comments

From Klaus Purath, Dec 13 2022: (Start)
Numbers m such that 4*m + 173 is a square.
The product of two consecutive terms belongs to the sequence, a(n)*a(n+1) = a(a(n)+n).
The prime terms in this sequence are listed in A153422. Each prime factor p divides exactly 2 out of any p consecutive terms. If a(i) and a(k) form such a pair that are divisible by p, then i + k == -15 (mod p). (End)

Crossrefs

Programs

  • Magma
    [n^2+15*n+13: n in [0..50]];
    
  • Mathematica
    Table[n^2 + 15 n + 13, {n, 0, 50}] (* or *) CoefficientList[Series[(13 - 10 x - x^2)/(1 - x)^3, {x, 0, 50}], x]
    LinearRecurrence[{3,-3,1},{13,29,47},50] (* Harvey P. Dale, Sep 06 2020 *)
  • PARI
    a(n)=n^2+15*n+13 \\ Charles R Greathouse IV, Jun 17 2017

Formula

G.f.: (13 - 10*x - x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
From Klaus Purath, Dec 13 2022: (Start)
a(n) = A119412(n+2) - 13.
a(n) = A132759(n+1) - 1.
a(n) = A098847(n+1) + n. (End)
Sum_{n>=0} 1/a(n) = tan(sqrt(173)*Pi/2)*Pi/sqrt(173) + 742077303/604626139. - Amiram Eldar, Feb 14 2023
E.g.f.: (13 + 16*x + x^2)*exp(x). - Elmo R. Oliveira, Oct 18 2024
Showing 1-3 of 3 results.