cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A005098 Numbers k such that 4k + 1 is prime.

Original entry on oeis.org

1, 3, 4, 7, 9, 10, 13, 15, 18, 22, 24, 25, 27, 28, 34, 37, 39, 43, 45, 48, 49, 57, 58, 60, 64, 67, 69, 70, 73, 78, 79, 84, 87, 88, 93, 97, 99, 100, 102, 105, 108, 112, 114, 115, 127, 130, 135, 139, 142, 144, 148, 150, 153, 154, 160, 163, 165, 168, 169, 175, 177, 183
Offset: 1

Views

Author

Keywords

Comments

Sum of i-th and j-th triangular numbers, where i=A096029(n), j=A096030(n); i.e., a(n) = A000217(A096029(n)) + A000217(A096030(n)). - Lekraj Beedassy, Jun 16 2004
For every k in the sequence, there is exactly 1 square number that can be subtracted to leave a pronic (A002378). E.g., 27 - 25 = 2, 99 - 9 = 90. - Jon Perry, Nov 06 2010
See A208295 for details concerning the preceding Jon Perry comment. - Wolfdieter Lang, Mar 29 2012
a(k) appears in the o.g.f. for floor(A002144(k)*j^2/4), j >= 0, for k >= 1: x*(a(k)*(1 + x^2) + b(k)*x)/((1 - x)^3*(1 + x)), together with b(k) = (A002144(k) + 1)/2 = A119681(k). - Wolfdieter Lang, Aug 07 2013

Crossrefs

See A002144 for the actual primes.

Programs

  • Haskell
    a005098 = (`div` 4) . (subtract 1) . a002144
    -- Reinhard Zumkeller, Mar 17 2013
  • Magma
    [k: k in [0..10000] | IsPrime(4*k+1)] // Vincenzo Librandi, Nov 18 2010
    
  • Maple
    a := []; for k from 1 to 500 do if isprime(4*k+1) then a := [op(a), k]; fi; od: A005098 := k->a[k];
  • Mathematica
    Select[Range[200], PrimeQ[4# + 1] &] (* Harvey P. Dale, Apr 20 2011 *)
  • PARI
    is(k)=isprime(4*k+1) \\ Charles R Greathouse IV, Nov 20 2012
    

Formula

a(n) = (A002144(n)-1)/4.

Extensions

More terms from Ray Chandler, Jun 26 2004
Edited by Charles R Greathouse IV, Mar 17 2010

A227541 a(n) = floor(13*n^2/4).

Original entry on oeis.org

0, 3, 13, 29, 52, 81, 117, 159, 208, 263, 325, 393, 468, 549, 637, 731, 832, 939, 1053, 1173, 1300, 1433, 1573, 1719, 1872, 2031, 2197, 2369, 2548, 2733, 2925, 3123, 3328, 3539, 3757, 3981, 4212, 4449, 4693, 4943, 5200, 5463, 5733, 6009
Offset: 0

Views

Author

Wolfdieter Lang, Aug 07 2013

Keywords

Comments

This generalizes A032527, which uses 5, to 13 (the next prime 1 (mod 4)). The figures in A032527 use n/2 concentric dotted pentagons for even n, and (n-1)/2 concentric dotted pentagons plus an extra dot in the middle if n is odd. In the present case one can take n/2 concentric dotted 13-gons (the dot numbers of each side for these 13-gons are 2, 4, 6, ..., n) for even n>=2. There is no figure for n = 0. For odd n one has (n-1)/2 concentric dotted 13-gons (the dot numbers of each side for these 13-gons are 3, 5, 7, ..., n) and an extra dotted 3-gon in the middle. See the example section below for the counting.
a(n) = -N(-floor(n/2),n) with the N(a,b) = ((2*a+b)^2 - b^2*13)/4, the norm for integers a + b*omega(13), a, b rational integers, in the quadratic number field Q(sqrt(13)), where omega(13) = (1 + sqrt(13))/2.
a(n) = max({|N(a,n)|,a = -n..+n}) = |N(-floor(n/2),n)| = 3*n^2 + n*floor(n/2) - floor(n/2)^2 = floor(13*n^2/4) (the last eq. checks for even and odd n).
In the general case one has for primes 1 (mod 4), p(k) = A002144(k), k >= 1, a(p(k);n) = floor(p(k)*n^2/4) with o.g.f. G(p(k);x) = x*(A(k)*(1+x^2) + B(k)*x)/((1-x)^3*(1+x)), where A(k) = A005098(k) = (p(k)-1)/4 and B(k) = A119681(k) = (p(k)+1)/2. This follows from the alternative formula a(p(k),n) = p(k)*n^2/4 + ((-1)^n-1)/8, n >= 0 (which checks for even and odd n). Because the denominator of the o.g.f. is 1-2*x+2*x^3-x^4 the recurrence given by Bruno Berselli below holds for all a(k;n) sequences with inputs for n = -1, 0, 1, 2 given by (p(k)-1)/4, 0, (p(k)-1)/4, p(k), respectively.
The dot counting in the concentric p(k)-gons is similar to the one described for p = 5 in A032527 and for p=13 here. For odd n one puts an additional dotted A(k)-gon into the center. - Wolfdieter Lang, Aug 08 2013

Examples

			Counting dots in the concentric dotted 13-gons described above in a comment:
a(2*k), k >= 1: (2-1)*13 = 13, (1+(4-1))*13 = 52, (1+3+(6-1))*13 = 117, (1+3+5+7)*13 = 208, ... a(2*k+1), k >= 0: 3, 3+(3-1)*13 = 29, 3+(2+(5-1))*13 = 81, 3+2*(1+2+3)*13 = 159, ... (a dotted triangle is put into the middle of the k concentric 13-gons).
		

Crossrefs

Cf. A032527 (case for prime 5).

Programs

Formula

a(n) = 13*n^2/4+((-1)^n-1)/8, n >= 0 (use even or odd n to prove it).
G.f.: x*(3+7*x+3*x^2)/((1-x)^3*(1+x)).
a(2*k) = k^2*13, k >= 0.
a(2*k+1) = 3 + k*(k+1)*13, k >= 0.
a(n) = a(-n) = 2*a(n-1) - 2*a(n-3) + a(n-4). - Bruno Berselli, Aug 08 2013
a(n) = Sum_{j=1..n} Sum_{i=1..n} ceiling((i+j-n+5)/2). - Wesley Ivan Hurt, Mar 12 2015
Sum_{n>=1} 1/a(n) = Pi^2/78 + tan(Pi/(2*sqrt(13)))*Pi/sqrt(13). - Amiram Eldar, Jul 30 2024

A292911 Numbers n such that A291897(n) is divisible by (2*n-1)^3.

Original entry on oeis.org

1, 3, 7, 9, 15, 19, 21, 27, 31, 37, 45, 49, 51, 55, 57, 69, 75, 79, 87, 91, 97, 99, 115, 117, 121, 129, 135, 139, 141, 147, 157, 159, 169, 175, 177, 187, 195, 199, 201, 205, 211, 217, 225, 229, 231, 255, 261, 271, 279, 285, 289, 297, 301, 307, 309, 321, 327
Offset: 1

Views

Author

Vladimir Shevelev, Sep 26 2017

Keywords

Comments

Conjecture: Every prime of the form 4*k+1 (A002144) is contained in the sequence {2*a(n)-1}.
The author's former conjecture that, for n>=2 the numbers {2*a(n)-1} are consecutive primes of the form 4*k+1, was disproved at n = 553 by Peter J. C. Moses. (553*2 - 1 = 1105 is the smallest term which is a product of three distinct (4*k+1)-primes). - Vladimir Shevelev, Sep 27 2017
553 is also (after 1) the smallest number which is missing from A119681 but is present here. - R. J. Mathar, Sep 29 2017

Crossrefs

Programs

  • Mathematica
    Select[Array[{2^IntegerExponent[2 #, 2] EulerE[2 # - 1, #], #} &, 330], Divisible[#1, (2 #2 - 1)^3] & @@ # &][[All, -1]] (* Michael De Vlieger, Sep 27 2017, after Peter Luschny at A291897 *)

Formula

If the conjecture is true, then for n>=2, a(n) <= (A002144(n-1) + 1)/2 (the equality holds up to 90).

Extensions

More terms from Peter J. C. Moses, Sep 26 2017
Showing 1-3 of 3 results.