cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A122018 Modulo 2 recursion switch between A000898 and A121966: A000898 first.

Original entry on oeis.org

1, 2, 6, 2, 40, 32, 464, 272, 7040, 4864, 136448, 87808, 3177472, 2123776, 86861824, 57128960, 2720112640, 1806049280, 96095928320, 63587041280, 3778819358720, 2507078533120, 163724570132480, 108568842403840, 7748467910901760
Offset: 0

Views

Author

Roger L. Bagula, Sep 11 2006

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember; if n::odd then procname(n-1)-(n-1)*procname(n-2) else 2*procname(n-1)+2*(n-1)*procname(n-2) fi end proc:
    f(0):= 1: f(1):= 2:
    map(f, [$0..50]); # Robert Israel, Jun 20 2018
  • Mathematica
    a[0] = 1; a[1] = 2; a[n_] := a[n] = If[Mod[n, 2] == 1, a[n - 1] - (n - 1)*a[n - 2], 2*(a[n - 1] + (n - 1)*a[n - 2])] b = Table[a[n], {n, 0, 30}]

Formula

For n>=2, a(n) = a(n-1) - (n-1)*a(n-2) if n is odd, a(n) = 2*a(n-1) + 2*(n-1)*a(n-2) if n is even. - Edited by Robert Israel, Jun 20 2018

Extensions

Offset changed by Robert Israel, Jun 20 2018

A062267 Row sums of (signed) triangle A060821 (Hermite polynomials).

Original entry on oeis.org

1, 2, 2, -4, -20, -8, 184, 464, -1648, -10720, 8224, 230848, 280768, -4978816, -17257600, 104891648, 727511296, -1901510144, -28538404352, 11377556480, 1107214478336, 1759326697472, -42984354695168, -163379084079104
Offset: 0

Views

Author

Wolfdieter Lang, Jun 19 2001

Keywords

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x*(2-x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jun 08 2018
  • Maple
    A062267 := proc(n)
        HermiteH(n,1) ;
        simplify(%) ;
    end proc: # R. J. Mathar, Feb 05 2013
  • Mathematica
    lst={};Do[p=HermiteH[n,1];AppendTo[lst,p],{n,0,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Jun 15 2009 *)
    Table[2^n HypergeometricU[-n/2, 1/2, 1], {n, 0, 23}] (* Benedict W. J. Irwin, Oct 17 2017 *)
    With[{nmax=50}, CoefficientList[Series[Exp[x*(2-x)], {x,0,nmax}],x]* Range[0, nmax]!] (* G. C. Greubel, Jun 08 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(-x*(x-2)))) \\ G. C. Greubel, Jun 08 2018
    
  • PARI
    a(n) = polhermite(n,1); \\ Michel Marcus, Jun 09 2018
    
  • Python
    from sympy import hermite, Poly
    def a(n): return sum(Poly(hermite(n, x), x).all_coeffs()) # Indranil Ghosh, May 26 2017
    

Formula

a(n) = Sum_{m=0..n} A060821(n, m) = H(n, 1), with the Hermite polynomials H(n, x).
E.g.f.: exp(-x*(x-2)).
a(n) = 2*(a(n - 1) - (n - 1)*a(n - 2)). - Roger L. Bagula, Sep 11 2006
a(n) = 2^n * U(-n/2, 1/2, 1), where U is the confluent hypergeometric function. - Benedict W. J. Irwin, Oct 17 2017
E.g.f.: Product_{k>=1} ((1 + x^k)/(1 - x^k))^(mu(k)/k). - Ilya Gutkovskiy, May 26 2019

A122021 a(n) = a(n-2) - (n-1)*a(n-3), with a(0) = 0, a(1) = 1, a(2) = 2.

Original entry on oeis.org

0, 1, 2, 1, -1, -7, -6, -1, 43, 47, 52, -383, -465, -1007, 4514, 5503, 19619, -66721, -73932, -419863, 1193767, 1058777, 10010890, -25204097, -14340981, -265465457, 615761444, 107400049, 7783328783, -17133920383, 4668727362
Offset: 0

Views

Author

Roger L. Bagula, Sep 12 2006

Keywords

Crossrefs

Programs

  • GAP
    a:= function(n)
        if n<3 then return n;
        else return a(n-2) - (n-1)*a(n-3);
        fi;
      end;
    List([0..30], n-> a(n) ); # G. C. Greubel, Oct 06 2019
  • Magma
    I:=[0,1,2]; [n le 3 select I[n] else Self(n-2) - (n-2)*Self(n-3): n in [1..30]]; // G. C. Greubel, Oct 06 2019
    
  • Maple
    a:= proc(n) option remember;
    if n < 3 then n
    else a(n-2)-(n-1)*a(n-3)
    fi;
    end proc;
    seq(a(n), n = 0..30); # G. C. Greubel, Oct 06 2019
  • Mathematica
    a[0]=0; a[1]=1; a[2]=2; a[n_]:= a[n]= a[n-2] - (n-1)*a[n-3]; Table[a[n], {n, 0, 30}]
    RecurrenceTable[{a[0]==0,a[1]==1,a[2]==2,a[n]==a[n-2]-(n-1)a[n-3]},a,{n,30}] (* Harvey P. Dale, Apr 29 2022 *)
  • PARI
    my(m=30, v=concat([0,1,2], vector(m-3))); for(n=4, m, v[n] = v[n-2] - (n-2)*v[n-3]); v \\ G. C. Greubel, Oct 06 2019
    
  • Sage
    def a(n):
        if (n<3): return n
        else: return a(n-2) - (n-1)* a(n-3)
    [a(n) for n in (0..30)] # G. C. Greubel, Oct 06 2019
    

Extensions

Edited by N. J. A. Sloane, Sep 12 2006
Offset changed by G. C. Greubel, Oct 06 2019

A122022 a(n) = a(n-1) - (n-1)*a(n-4), with a(0) = 0, a(1) = 1, a(2) = 2, a(3) = 1.

Original entry on oeis.org

0, 1, 2, 1, 1, -3, -13, -19, -26, -2, 115, 305, 591, 615, -880, -5150, -14015, -23855, -8895, 83805, 350090, 827190, 1013985, -829725, -8881795, -28734355, -54083980, -32511130, 207297335, 1011859275, 2580294695, 3555628595, -2870588790, -35250085590
Offset: 0

Views

Author

Roger L. Bagula, Sep 12 2006

Keywords

Crossrefs

Programs

  • GAP
    a:= function(n)
        if n<3 then return n;
        elif n=3 then return 1;
        else return a(n-1) - (n-1)*a(n-4);
        fi;
      end;
    List([1..30], n-> a(n) ); # G. C. Greubel, Oct 06 2019
  • Magma
    I:=[0,1,2,1]; [n le 4 select I[n] else Self(n-1) - (n-2)*Self(n-4): n in [1..30]]; // G. C. Greubel, Oct 06 2019
    
  • Maple
    a:= proc(n) option remember;
          if n<3 then n
        elif n=3 then 1
        else a(n-1) - (n-1)*a(n-4)
          fi;
    end: seq(a(n), n=0..30); # G. C. Greubel, Oct 06 2019
  • Mathematica
    a[0]=0; a[1]=1; a[2]=2; a[3]=1; a[n_]:= a[n]= a[n-1] - (n-1)*a[n-4]; Table[a[n], {n, 0, 30}]
    RecurrenceTable[{a[0]==0,a[1]==1,a[2]==2,a[3]==1,a[n]==a[n-1]- (n-1) a[n-4]},a,{n,0,30}] (* Harvey P. Dale, Nov 28 2014 *)
  • PARI
    my(m=30, v=concat([0,1,2,1], vector(m-4))); for(n=5, m, v[n] = v[n-1] - (n-2)*v[n-4]); v \\ G. C. Greubel, Oct 06 2019
    
  • Sage
    @CachedFunction
    def a(n):
        if (n<3): return n
        elif (n==3): return 1
        else: return a(n-1) - (n-1)*a(n-4)
    [a(n) for n in (0..30)] # G. C. Greubel, Oct 06 2019
    

Extensions

Edited by N. J. A. Sloane, Sep 12 2006
Offset corrected by Georg Fischer, Jun 06 2021

A122033 a(n) = 2*a(n-1) - 2*(n-2)*a(n-2), with a(0)=1, a(1)=2.

Original entry on oeis.org

1, 2, 4, 4, -8, -40, -16, 368, 928, -3296, -21440, 16448, 461696, 561536, -9957632, -34515200, 209783296, 1455022592, -3803020288, -57076808704, 22755112960, 2214428956672, 3518653394944, -85968709390336, -326758168158208, 3301044295639040, 22286480662872064
Offset: 0

Views

Author

Roger L. Bagula, Sep 13 2006

Keywords

Crossrefs

Programs

  • GAP
    a:=[1,2];; for n in [3..35] do a[n]:=2*(a[n-1]-(n-3)*a[n-2]); od; a; # G. C. Greubel, Oct 04 2019
  • Magma
    I:=[1,2]; [n le 2 select I[n] else 2*(Self(n-1)-(n-3)*Self(n-2)): n in [1..35]]; // G. C. Greubel, Oct 04 2019
    
  • Maple
    a:= proc(n) option remember;
          if n < 2 then n+1
        else 2*(a(n-1) - (n-2)*a(n-2))
          fi
        end proc:
    seq(a(n), n = 0..35); # G. C. Greubel, Oct 04 2019
  • Mathematica
    a[n_]:= a[n]= If[n<2, n+1, a[n-1]-(n-2)*a[n-2]]; Table[a[n], {n,0,30}] (* modified by G. C. Greubel, Oct 04 2019 *)
    nxt[{n_,a_,b_}]:={n+1,b,2b-2a(n-1)}; NestList[nxt,{1,1,2},30][[;;,2]] (* Harvey P. Dale, Jan 01 2024 *)
  • PARI
    my(m=35, v=concat([1,2], vector(m-2))); for(n=3, m, v[n] = 2*(v[n-1] - (n-3)*v[n-2] ) ); v \\ G. C. Greubel, Oct 04 2019
    
  • Sage
    def a(n):
        if n<2: return n+1
        else: return 2*(a(n-1) - (n-2)*a(n-2))
    [a(n) for n in (0..35)] # G. C. Greubel, Oct 04 2019
    

Formula

a(n) = 2*a(n-1) - 2*(n-2)*a(n-2), with a(0)=1, a(1)=2. - G. C. Greubel, Oct 04 2019
a(n) = 2*A062267(n-1) for n > 0. - Michel Marcus, Oct 05 2019
E.g.f.: 1 + exp(1)*sqrt(Pi)*( erf(1) - erf(1-x) ), where erf(x) is the error function. - G. C. Greubel, Oct 05 2019

Extensions

Edited by N. J. A. Sloane, Sep 17 2006
Corrected and offset changed by G. C. Greubel, Oct 04 2019

A328141 a(n) = a(n-1) - (n-2)*a(n-2), with a(0)=1, a(1)=2.

Original entry on oeis.org

1, 2, 2, 0, -4, -4, 12, 32, -40, -264, 56, 2432, 1872, -24880, -47344, 276096, 938912, -3202528, -18225120, 36217856, 364270016, -323869248, -7609269568, -808015360, 166595915136, 185180268416, -3813121694848, -8442628405248, 90698535660800, 318649502602496, -2220909495899904
Offset: 0

Views

Author

G. C. Greubel, Oct 04 2019

Keywords

Comments

Former title and formula of A122033, but not the data.

Crossrefs

Programs

  • GAP
    a:=[1,2];; for n in [3..35] do a[n]:=a[n-1]-(n-3)*a[n-2]; od; a;
  • Magma
    I:=[1,2]; [n le 2 select I[n] else Self(n-1) - (n-3)*Self(n-2): n in [1..35]];
    
  • Maple
    a:= proc (n) option remember;
    if n < 2 then n+1
    else a(n-1) - (n-2)*a(n-2)
    fi;
    end proc; seq(a(n), n = 0..35);
  • Mathematica
    a[n_]:= a[n]= If[n<2, n+1, a[n-1]-(n-2)*a[n-2]]; Table[a[n], {n,0,35}]
  • PARI
    my(m=35, v=concat([1,2], vector(m-2))); for(n=3, m, v[n] = v[n-1] - (n-3)*v[n-2] ); v
    
  • Sage
    def a(n):
        if n<2: return n+1
        else: return a(n-1) - (n-2)*a(n-2)
    [a(n) for n in (0..35)]
    

Formula

a(n) = a(n-1) - (n-2)*a(n-2), with a(0)=1, a(1)=2.
E.g.f.: 1 + sqrt(2*e*Pi)*( erf(1/sqrt(2)) + erf((x-1)/sqrt(2)) ), where erf(x) is the error function.
a(n) = 2*(-1)^(n-1)*A001464(n-1).
a(n) = 2*(1/sqrt(2))^(n-1) * Hermite(n-1, 1/sqrt(2)), n > 0.

A122031 a(n) = a(n - 1) + (n - 1)*a(n - 2).

Original entry on oeis.org

1, 2, 3, 7, 16, 44, 124, 388, 1256, 4360, 15664, 59264, 231568, 942736, 3953120, 17151424, 76448224, 350871008, 1650490816, 7966168960, 39325494464, 198648873664, 1024484257408, 5394759478016, 28957897398400
Offset: 0

Views

Author

Roger L. Bagula, Sep 13 2006

Keywords

Comments

Equals the eigensequence of an infinite lower triangular matrix with (1, 1, 1, ...) in the main diagaonal, (1, 1, 2, 3, 4, 5, ...) in the subdiagonal and the rest zeros. - Gary W. Adamson, Apr 13 2009

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; a[n_] := a[n] = a[n - 1] + (n - 1)*a[n - 2] Table[a[n], {n, 0, 30}]
    Table[n!*SeriesCoefficient[1/2*Exp[x+x^2/2]*(2-Sqrt[2*E*Pi]*Erf[1/Sqrt[2]]+Sqrt[2*E*Pi]*Erf[(1+x)/Sqrt[2]]),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec after Paul Abbott, Dec 27 2012 *)
    RecurrenceTable[{a[0]==1,a[1]==2,a[n]==a[n-1]+(n-1)a[n-2]},a,{n,30}] (* Harvey P. Dale, Feb 21 2015 *)

Formula

E.g.f.: (1/2)*exp(x + x^2/2)*(2 - sqrt(2*exp(1)*Pi)*erf(1/sqrt(2)) + sqrt(2*exp(1)*Pi)*erf((1+x)/sqrt(2))). - Paul Abbott (paul(AT) physics.uwa.edu.au)
a(n) ~ (1/sqrt(2) + sqrt(Pi)/2*exp(1/2) * (1 - erf(1/sqrt(2)))) * n^(n/2)*exp(sqrt(n) - n/2 - 1/4) * (1+7/(24*sqrt(n))). - Vaclav Kotesovec, Dec 27 2012

Extensions

Edited by N. J. A. Sloane, Sep 17 2006
Offset corrected by Vaclav Kotesovec, Dec 27 2012

A122598 a(0) = 0; a(1) = 1; if n is odd then a(n) = 2*a(n-1) - (n-1)*a(n-2) otherwise a(n) = 2*(a(n-1) - (n-2)*a(n-2)).

Original entry on oeis.org

0, 1, 2, 2, -4, -16, 0, 96, 192, -384, -3840, -3840, 69120, 184320, -1290240, -5160960, 25804800, 134184960, -557383680, -3530096640, 13005619200, 96613171200, -326998425600, -2779486617600, 8828957491200, 84365593804800, -255058771968000, -2703622982860800, 7855810176614400
Offset: 0

Views

Author

Roger L. Bagula, Sep 19 2006

Keywords

References

  • E. S. R. Gopal, Specific Heats at Low Temperatures, Plenum Press, New York, 1966, pages 36-40.

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember;
    if n::odd then 2*procname(n-1) - (n-1)*procname(n-2)
    else 2*procname(n-1) - 2*(n-2)*procname(n-2)
    fi
    end proc:
    f(0):= 0: f(1):= 1:
    map(f, [$0..100]); # Robert Israel, Mar 15 2017
  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := a[n] = If[Mod[n, 2] == 1, 2*a[n - 1] - ( n - 1)*a[n - 2], 2*(a[n - 1] - (n - 2)*a[n - 2])] b = Table[a[n], {n, 0, 30}]
    nxt[{n_,a_,b_}]:={n+1,b,If[EvenQ[n],2*b-n*a,2(b-(n-1)a)]}; Transpose[ NestList[ nxt,{1,0,1},30]][[2]] (* Harvey P. Dale, Dec 15 2014 *)

Formula

a(n) = 2*a(n-1) - (n-1)*a(n-2) for n odd > 1; a(n) = 2*(a(n-1) - (n-2)*a(n-2)) for n even > 1.

Extensions

Edited by N. J. A. Sloane, Oct 01 2006

A122017 a(n) = if n even then a(n - 1) - (n - 1)*a(n - 2) otherwise 2*(a(n - 1) + (n - 1)*a(n - 2)).

Original entry on oeis.org

1, 2, 1, 10, 7, 94, 59, 1246, 833, 21602, 14105, 460250, 305095, 11656190, 7689955, 341753230, 226403905, 11388911170, 7540044785, 425080891690, 281820040775, 17566875749150, 11648654892875, 796239842748350, 528320780212225
Offset: 0

Views

Author

Roger L. Bagula, Sep 11 2006

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; a[n_] := a[n] = If[Mod[n, 2] == 0, a[n - 1] - (n - 1)*a[n - 2], 2*(a[n - 1] + (n - 1)*a[n - 2])] b = Table[a[n], {n, 0, 30}]
    nxt[{n_,a_,b_}]:={n+1,b,If[OddQ[n],b-n*a,2(b+n*a)]}; NestList[nxt,{1,1,2},30][[All,2]] (* Harvey P. Dale, Jun 12 2020 *)

Extensions

Edited by N. J. A. Sloane, Sep 13 2006
Offset corrected by Jason Yuen, Sep 15 2024
Showing 1-9 of 9 results.