Original entry on oeis.org
1, 2, 6, 2, 40, 32, 464, 272, 7040, 4864, 136448, 87808, 3177472, 2123776, 86861824, 57128960, 2720112640, 1806049280, 96095928320, 63587041280, 3778819358720, 2507078533120, 163724570132480, 108568842403840, 7748467910901760
Offset: 0
-
f:= proc(n) option remember; if n::odd then procname(n-1)-(n-1)*procname(n-2) else 2*procname(n-1)+2*(n-1)*procname(n-2) fi end proc:
f(0):= 1: f(1):= 2:
map(f, [$0..50]); # Robert Israel, Jun 20 2018
-
a[0] = 1; a[1] = 2; a[n_] := a[n] = If[Mod[n, 2] == 1, a[n - 1] - (n - 1)*a[n - 2], 2*(a[n - 1] + (n - 1)*a[n - 2])] b = Table[a[n], {n, 0, 30}]
A062267
Row sums of (signed) triangle A060821 (Hermite polynomials).
Original entry on oeis.org
1, 2, 2, -4, -20, -8, 184, 464, -1648, -10720, 8224, 230848, 280768, -4978816, -17257600, 104891648, 727511296, -1901510144, -28538404352, 11377556480, 1107214478336, 1759326697472, -42984354695168, -163379084079104
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x*(2-x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jun 08 2018
-
A062267 := proc(n)
HermiteH(n,1) ;
simplify(%) ;
end proc: # R. J. Mathar, Feb 05 2013
-
lst={};Do[p=HermiteH[n,1];AppendTo[lst,p],{n,0,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Jun 15 2009 *)
Table[2^n HypergeometricU[-n/2, 1/2, 1], {n, 0, 23}] (* Benedict W. J. Irwin, Oct 17 2017 *)
With[{nmax=50}, CoefficientList[Series[Exp[x*(2-x)], {x,0,nmax}],x]* Range[0, nmax]!] (* G. C. Greubel, Jun 08 2018 *)
-
x='x+O('x^30); Vec(serlaplace(exp(-x*(x-2)))) \\ G. C. Greubel, Jun 08 2018
-
a(n) = polhermite(n,1); \\ Michel Marcus, Jun 09 2018
-
from sympy import hermite, Poly
def a(n): return sum(Poly(hermite(n, x), x).all_coeffs()) # Indranil Ghosh, May 26 2017
A122021
a(n) = a(n-2) - (n-1)*a(n-3), with a(0) = 0, a(1) = 1, a(2) = 2.
Original entry on oeis.org
0, 1, 2, 1, -1, -7, -6, -1, 43, 47, 52, -383, -465, -1007, 4514, 5503, 19619, -66721, -73932, -419863, 1193767, 1058777, 10010890, -25204097, -14340981, -265465457, 615761444, 107400049, 7783328783, -17133920383, 4668727362
Offset: 0
-
a:= function(n)
if n<3 then return n;
else return a(n-2) - (n-1)*a(n-3);
fi;
end;
List([0..30], n-> a(n) ); # G. C. Greubel, Oct 06 2019
-
I:=[0,1,2]; [n le 3 select I[n] else Self(n-2) - (n-2)*Self(n-3): n in [1..30]]; // G. C. Greubel, Oct 06 2019
-
a:= proc(n) option remember;
if n < 3 then n
else a(n-2)-(n-1)*a(n-3)
fi;
end proc;
seq(a(n), n = 0..30); # G. C. Greubel, Oct 06 2019
-
a[0]=0; a[1]=1; a[2]=2; a[n_]:= a[n]= a[n-2] - (n-1)*a[n-3]; Table[a[n], {n, 0, 30}]
RecurrenceTable[{a[0]==0,a[1]==1,a[2]==2,a[n]==a[n-2]-(n-1)a[n-3]},a,{n,30}] (* Harvey P. Dale, Apr 29 2022 *)
-
my(m=30, v=concat([0,1,2], vector(m-3))); for(n=4, m, v[n] = v[n-2] - (n-2)*v[n-3]); v \\ G. C. Greubel, Oct 06 2019
-
def a(n):
if (n<3): return n
else: return a(n-2) - (n-1)* a(n-3)
[a(n) for n in (0..30)] # G. C. Greubel, Oct 06 2019
A122022
a(n) = a(n-1) - (n-1)*a(n-4), with a(0) = 0, a(1) = 1, a(2) = 2, a(3) = 1.
Original entry on oeis.org
0, 1, 2, 1, 1, -3, -13, -19, -26, -2, 115, 305, 591, 615, -880, -5150, -14015, -23855, -8895, 83805, 350090, 827190, 1013985, -829725, -8881795, -28734355, -54083980, -32511130, 207297335, 1011859275, 2580294695, 3555628595, -2870588790, -35250085590
Offset: 0
-
a:= function(n)
if n<3 then return n;
elif n=3 then return 1;
else return a(n-1) - (n-1)*a(n-4);
fi;
end;
List([1..30], n-> a(n) ); # G. C. Greubel, Oct 06 2019
-
I:=[0,1,2,1]; [n le 4 select I[n] else Self(n-1) - (n-2)*Self(n-4): n in [1..30]]; // G. C. Greubel, Oct 06 2019
-
a:= proc(n) option remember;
if n<3 then n
elif n=3 then 1
else a(n-1) - (n-1)*a(n-4)
fi;
end: seq(a(n), n=0..30); # G. C. Greubel, Oct 06 2019
-
a[0]=0; a[1]=1; a[2]=2; a[3]=1; a[n_]:= a[n]= a[n-1] - (n-1)*a[n-4]; Table[a[n], {n, 0, 30}]
RecurrenceTable[{a[0]==0,a[1]==1,a[2]==2,a[3]==1,a[n]==a[n-1]- (n-1) a[n-4]},a,{n,0,30}] (* Harvey P. Dale, Nov 28 2014 *)
-
my(m=30, v=concat([0,1,2,1], vector(m-4))); for(n=5, m, v[n] = v[n-1] - (n-2)*v[n-4]); v \\ G. C. Greubel, Oct 06 2019
-
@CachedFunction
def a(n):
if (n<3): return n
elif (n==3): return 1
else: return a(n-1) - (n-1)*a(n-4)
[a(n) for n in (0..30)] # G. C. Greubel, Oct 06 2019
A122033
a(n) = 2*a(n-1) - 2*(n-2)*a(n-2), with a(0)=1, a(1)=2.
Original entry on oeis.org
1, 2, 4, 4, -8, -40, -16, 368, 928, -3296, -21440, 16448, 461696, 561536, -9957632, -34515200, 209783296, 1455022592, -3803020288, -57076808704, 22755112960, 2214428956672, 3518653394944, -85968709390336, -326758168158208, 3301044295639040, 22286480662872064
Offset: 0
-
a:=[1,2];; for n in [3..35] do a[n]:=2*(a[n-1]-(n-3)*a[n-2]); od; a; # G. C. Greubel, Oct 04 2019
-
I:=[1,2]; [n le 2 select I[n] else 2*(Self(n-1)-(n-3)*Self(n-2)): n in [1..35]]; // G. C. Greubel, Oct 04 2019
-
a:= proc(n) option remember;
if n < 2 then n+1
else 2*(a(n-1) - (n-2)*a(n-2))
fi
end proc:
seq(a(n), n = 0..35); # G. C. Greubel, Oct 04 2019
-
a[n_]:= a[n]= If[n<2, n+1, a[n-1]-(n-2)*a[n-2]]; Table[a[n], {n,0,30}] (* modified by G. C. Greubel, Oct 04 2019 *)
nxt[{n_,a_,b_}]:={n+1,b,2b-2a(n-1)}; NestList[nxt,{1,1,2},30][[;;,2]] (* Harvey P. Dale, Jan 01 2024 *)
-
my(m=35, v=concat([1,2], vector(m-2))); for(n=3, m, v[n] = 2*(v[n-1] - (n-3)*v[n-2] ) ); v \\ G. C. Greubel, Oct 04 2019
-
def a(n):
if n<2: return n+1
else: return 2*(a(n-1) - (n-2)*a(n-2))
[a(n) for n in (0..35)] # G. C. Greubel, Oct 04 2019
A328141
a(n) = a(n-1) - (n-2)*a(n-2), with a(0)=1, a(1)=2.
Original entry on oeis.org
1, 2, 2, 0, -4, -4, 12, 32, -40, -264, 56, 2432, 1872, -24880, -47344, 276096, 938912, -3202528, -18225120, 36217856, 364270016, -323869248, -7609269568, -808015360, 166595915136, 185180268416, -3813121694848, -8442628405248, 90698535660800, 318649502602496, -2220909495899904
Offset: 0
-
a:=[1,2];; for n in [3..35] do a[n]:=a[n-1]-(n-3)*a[n-2]; od; a;
-
I:=[1,2]; [n le 2 select I[n] else Self(n-1) - (n-3)*Self(n-2): n in [1..35]];
-
a:= proc (n) option remember;
if n < 2 then n+1
else a(n-1) - (n-2)*a(n-2)
fi;
end proc; seq(a(n), n = 0..35);
-
a[n_]:= a[n]= If[n<2, n+1, a[n-1]-(n-2)*a[n-2]]; Table[a[n], {n,0,35}]
-
my(m=35, v=concat([1,2], vector(m-2))); for(n=3, m, v[n] = v[n-1] - (n-3)*v[n-2] ); v
-
def a(n):
if n<2: return n+1
else: return a(n-1) - (n-2)*a(n-2)
[a(n) for n in (0..35)]
A122031
a(n) = a(n - 1) + (n - 1)*a(n - 2).
Original entry on oeis.org
1, 2, 3, 7, 16, 44, 124, 388, 1256, 4360, 15664, 59264, 231568, 942736, 3953120, 17151424, 76448224, 350871008, 1650490816, 7966168960, 39325494464, 198648873664, 1024484257408, 5394759478016, 28957897398400
Offset: 0
-
a[0] = 1; a[1] = 2; a[n_] := a[n] = a[n - 1] + (n - 1)*a[n - 2] Table[a[n], {n, 0, 30}]
Table[n!*SeriesCoefficient[1/2*Exp[x+x^2/2]*(2-Sqrt[2*E*Pi]*Erf[1/Sqrt[2]]+Sqrt[2*E*Pi]*Erf[(1+x)/Sqrt[2]]),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec after Paul Abbott, Dec 27 2012 *)
RecurrenceTable[{a[0]==1,a[1]==2,a[n]==a[n-1]+(n-1)a[n-2]},a,{n,30}] (* Harvey P. Dale, Feb 21 2015 *)
A122598
a(0) = 0; a(1) = 1; if n is odd then a(n) = 2*a(n-1) - (n-1)*a(n-2) otherwise a(n) = 2*(a(n-1) - (n-2)*a(n-2)).
Original entry on oeis.org
0, 1, 2, 2, -4, -16, 0, 96, 192, -384, -3840, -3840, 69120, 184320, -1290240, -5160960, 25804800, 134184960, -557383680, -3530096640, 13005619200, 96613171200, -326998425600, -2779486617600, 8828957491200, 84365593804800, -255058771968000, -2703622982860800, 7855810176614400
Offset: 0
- E. S. R. Gopal, Specific Heats at Low Temperatures, Plenum Press, New York, 1966, pages 36-40.
-
f:= proc(n) option remember;
if n::odd then 2*procname(n-1) - (n-1)*procname(n-2)
else 2*procname(n-1) - 2*(n-2)*procname(n-2)
fi
end proc:
f(0):= 0: f(1):= 1:
map(f, [$0..100]); # Robert Israel, Mar 15 2017
-
a[0] = 0; a[1] = 1; a[n_] := a[n] = If[Mod[n, 2] == 1, 2*a[n - 1] - ( n - 1)*a[n - 2], 2*(a[n - 1] - (n - 2)*a[n - 2])] b = Table[a[n], {n, 0, 30}]
nxt[{n_,a_,b_}]:={n+1,b,If[EvenQ[n],2*b-n*a,2(b-(n-1)a)]}; Transpose[ NestList[ nxt,{1,0,1},30]][[2]] (* Harvey P. Dale, Dec 15 2014 *)
A122017
a(n) = if n even then a(n - 1) - (n - 1)*a(n - 2) otherwise 2*(a(n - 1) + (n - 1)*a(n - 2)).
Original entry on oeis.org
1, 2, 1, 10, 7, 94, 59, 1246, 833, 21602, 14105, 460250, 305095, 11656190, 7689955, 341753230, 226403905, 11388911170, 7540044785, 425080891690, 281820040775, 17566875749150, 11648654892875, 796239842748350, 528320780212225
Offset: 0
-
a[0] = 1; a[1] = 2; a[n_] := a[n] = If[Mod[n, 2] == 0, a[n - 1] - (n - 1)*a[n - 2], 2*(a[n - 1] + (n - 1)*a[n - 2])] b = Table[a[n], {n, 0, 30}]
nxt[{n_,a_,b_}]:={n+1,b,If[OddQ[n],b-n*a,2(b+n*a)]}; NestList[nxt,{1,1,2},30][[All,2]] (* Harvey P. Dale, Jun 12 2020 *)
Showing 1-9 of 9 results.
Comments