A128447
Numbers k such that absolute value of 7^k - k^7 is prime.
Original entry on oeis.org
2, 6, 20, 24, 18582, 20366
Offset: 1
Cf.
A072180,
A109387,
A117705,
A117706,
A128448,
A128449,
A128450,
A128451,
A122003,
A128453,
A128454.
A128448
Numbers k such that 8^k - k^8 is prime.
Original entry on oeis.org
1, 11, 89, 201, 977, 1351, 3869, 60681
Offset: 1
Cf.
A072180,
A109387,
A117705,
A117706,
A128447,
A128449,
A128450,
A128451,
A122003,
A128453,
A128454.
A128449
Numbers k such that absolute value of 9^k - k^9 is prime.
Original entry on oeis.org
2, 10, 50, 7900, 18494, 23840, 36838
Offset: 1
Cf.
A072180,
A109387,
A117705,
A117706,
A128447,
A128448,
A128450,
A128451,
A122003,
A128453,
A128454.
A128450
Numbers k such that absolute value of 10^k - k^10 is prime.
Original entry on oeis.org
Cf.
A072180,
A109387,
A117705,
A117706,
A128447,
A128448,
A128449,
A128451,
A122003,
A128453,
A128454.
-
[n: n in [0..500]| IsPrime(10^n-n^10)]; // Vincenzo Librandi, Apr 01 2015
-
lst={};k=10;Do[If[PrimeQ[Abs[k^n-n^k]], AppendTo[lst, n]], {n, 0, 10^4}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 10 2008 *)
Select[Range[0, 10000], PrimeQ[10^# - #^10] &] (* Vincenzo Librandi, Apr 01 2015 *)
-
is(n)=isprime(abs(10^n-n^10)) \\ Charles R Greathouse IV, Feb 17 2017
A128451
Numbers k such that the absolute value of 11^k - k^11 is prime.
Original entry on oeis.org
8, 14, 80, 212, 230, 1352, 13674, 16094, 44772
Offset: 1
A123206
Primes of the form x^y - y^x, for x,y > 1.
Original entry on oeis.org
7, 17, 79, 431, 58049, 130783, 162287, 523927, 2486784401, 6102977801, 8375575711, 13055867207, 83695120256591, 375700268413577, 2251799813682647, 9007199254738183, 79792265017612001, 1490116119372884249
Offset: 1
The primes 6102977801 and 1490116119372884249 are of the form 5^y-y^5 (for y=14 and y=26) and therefore members of this sequence. The next larger primes of this form would have y > 4500 and would be much too large to be included. - _M. F. Hasler_, Aug 19 2014
Cf.
A072180,
A109387,
A117705,
A117706,
A128447,
A128449,
A128450,
A128451,
A122003,
A128453,
A128454.
-
N:= 10^100: # to get all terms <= N
A:= NULL:
for x from 2 while x^(x+1) - (x+1)^x <= N do
for y from x+1 do
z:= x^y - y^x;
if z > N then break
elif z > 0 and isprime(z) then A:=A, z;
fi
od od:
{A}; # Robert Israel, Aug 29 2014
-
Take[Select[Intersection[Flatten[Table[Abs[x^y-y^x],{x,2,120},{y,2,120}]]],PrimeQ[ # ]&],25]
nn=10^50; n=1; t=Union[Reap[While[n++; k=n+1; num=Abs[n^k-k^n]; num0&&PrimeQ[#]&]],nn]] (* Harvey P. Dale, Nov 23 2013 *)
-
a=[];for(S=1,199,for(x=2,S-2,ispseudoprime(p=x^(y=S-x)-y^x)&&a=concat(a,p)));Set(a) \\ May be incomplete in the upper range of values, i.e., beyond a given S=x+y, a larger S may yield a smaller prime (for small x). - M. F. Hasler, Aug 19 2014
A128454
Numbers k such that the absolute value of 14^k - k^14 is prime.
Original entry on oeis.org
1, 5, 11, 89, 101, 579, 655, 8115
Offset: 1
Cf.
A072180,
A109387,
A117705,
A117706,
A128447,
A128448,
A128449,
A128450,
A128451,
A122003,
A128453.
A122735
Smallest prime of the form (n^k - k^n) for k > 1, or 1 if no such prime exists.
Original entry on oeis.org
1, 7, 17, 1, 6102977801, 162287, 79792265017612001, 8375575711, 2486784401
Offset: 1
a(1) = 1 because (1^k - k^1) = (1 - k) < 0 for k > 1.
a(2) = 7 because 2^5 - 5^2 = 7 is prime, but (2^k - k^2) is not prime for 1 < k < 5, (2^2 - 2^2) = 0, (2^3 - 3^2) = -1, (2^4 - 4^2) = 0.
a(4) = 1 because no prime of the form (4^k - k^4) exists; 4^k - k^4 = (2^k - k^2)*(2^k + k^2).
a(12) = 83695120256591 = 12^13 - 13^12 = A024152(A122003(2)).
A243114
Primes of the form 6^x-x^6.
Original entry on oeis.org
5, 162287, 13055867207, 1719070799748422589190392551, 174588755932389037098918153698589675008087, 307180606913594390117978657628360735703373091543821695941623353827100004182413811352186951
Offset: 1
Cf.
A072180,
A109387,
A117705,
A117706,
A128447,
A128448,
A128449,
A128450,
A128451,
A122003,
A128453,
A128454.
-
Select[Table[6^x-x^6,{x,200}],PrimeQ] (* Harvey P. Dale, Jan 17 2018 *)
-
for(x=1,1e5,ispseudoprime(p=6^x-x^6)&&print1(p","))
Showing 1-9 of 9 results.
Comments