cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A128169 Numbers k such that k divides 1 + Sum_{j=1..k} prime(j)^5 = 1 + A122103(k).

Original entry on oeis.org

1, 2, 4, 6, 10, 12, 22, 58, 155, 363, 464, 665, 1146, 2870, 3048, 4019, 5931, 8724, 21503, 50439, 67560, 476281, 705570, 4050684, 6956459, 7443590, 10449928, 10799546, 15385564, 17735139, 83325458, 245271750, 255583775, 1395860516, 2921734534, 6255577368, 9050771725, 12062893218, 13689205205, 42254229197, 46440930382
Offset: 1

Views

Author

Alexander Adamchuk, Feb 22 2007, Feb 23 2007

Keywords

Comments

a(52) > 3*10^13. - Bruce Garner, Jun 05 2021
a(53) > 1.2*10^14. - Bruce Garner, Mar 28 2022

Crossrefs

Cf. A085450 (smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n).

Programs

  • Mathematica
    p = 2; k = 0; s = 1; lst = {}; While[k < 521330000, s = s + p^5; If[Mod[s, ++k] == 0, AppendTo[lst, k]; Print[{k, p}]]; p = NextPrime@ p]

Extensions

a(31) from Sean A. Irvine, Jan 19 2011
a(32)-a(33) from Robert G. Wilson v, Jan 20 2011
a(34)-a(41) from Robert Price, Dec 18 2013

A122142 Numbers m such that m divides sum of 5th powers of the first m primes A122103(m).

Original entry on oeis.org

1, 25, 837, 5129, 94375, 271465, 3576217, 3661659, 484486719, 2012535795, 31455148645, 95748332903, 145967218799, 165153427677, 21465291596581, 97698929023845
Offset: 1

Views

Author

Alexander Adamchuk, Aug 21 2006

Keywords

Comments

No other terms up to 10^8. - Stefan Steinerberger, Jun 06 2007
a(11) > 6*10^9. - Donovan Johnson, Oct 15 2012
a(13) > 10^11. - Robert Price, Mar 30 2013
a(15) > 10^12. - Paul W. Dyson, Jan 04 2021
a(16) > 2.2*10^13. - Bruce Garner, May 09 2021
a(17) > 10^14. - Paul W. Dyson, Feb 04 2022
a(17) > 10^15. - Paul W. Dyson, Nov 19 2024

Examples

			a(2) = 25 because 25 is the first number n>1 that divides A122103[n] = Sum[ Prime[k]^5, {k,1,n} ].
Mod[ A122103[25], 25] = Mod[ 2^5 + 3^5 + 5^5 + ... + 89^5 + 97^5, 25 ] = 0.
		

Crossrefs

Programs

  • Mathematica
    s = 0; t = {}; Do[s = s + Prime[n]^5; If[ Mod[s, n] == 0, AppendTo[t, n]], {n, 1000000}]; t
    Module[{nn = 4*10^6},Select[Thread[{Range[nn], Accumulate[ Prime[ Range[ nn]]^5]}], Divisible[#[[2]], #[[1]]] &]][[All, 1]] (* Generates the first 8 terms; to generate more, increase the value of nn, but the program may take a long time to run. *) (* Harvey P. Dale, Aug 26 2019 *)

Extensions

2 more terms from Stefan Steinerberger, Jun 06 2007
a(9)-a(10) from Donovan Johnson, Oct 15 2012
a(11)-a(12) from Robert Price, Mar 30 2013
a(13)-a(14) from Paul W. Dyson, Jan 04 2021
a(15) from Bruce Garner, May 09 2021
a(16) from Paul W. Dyson, Feb 04 2022

A122125 Indices n such that A122103[n] = Sum[ Prime[k]^5, {k,1,n}] is a prime.

Original entry on oeis.org

66, 148, 150, 164, 174, 214, 238, 264, 312, 328, 354, 440, 516, 536, 616, 624, 724, 744, 774, 836, 940, 1002, 1030, 1034, 1038, 1064, 1086, 1092, 1108, 1162, 1322, 1394, 1424, 1468, 1500, 1630, 1654, 1668, 1684, 1694, 1840, 1886, 1980
Offset: 1

Views

Author

Alexander Adamchuk, Aug 20 2006

Keywords

Comments

Corresponding primes of form Sum[ Prime[k]^5, {k,1,n} ] are listed in A122126[n] = {32353461605953,9874820441996857,10821208357045699,...}.

Crossrefs

Programs

  • Mathematica
    Select[Range[2000],PrimeQ[Sum[Prime[k]^5,{k,1,#1}]]&]

A122126 Primes of form Sum[ Prime[k]^5, {k,1,n} ] or primes in A122103[n].

Original entry on oeis.org

32353461605953, 9874820441996857, 10821208357045699, 20261841065985329, 30672624709674923, 126540093912585209, 267908140423628051, 538379772006780299, 1713808283318707391, 2413049165702037271
Offset: 1

Views

Author

Alexander Adamchuk, Aug 20 2006

Keywords

Comments

A122103[n] = Sum[ Prime[k]^5, {k,1,n} ] begins {32,275,3400,20207,181258,552551,1972408,4448507,...}. Indices n such that A122103[n] is prime are listed in A122125[n] = {66,148,150,164,174,214,238,264,312,328,354,440,516,536,616,624,724,744,774, 836,940,...}.

Crossrefs

Programs

  • Mathematica
    Select[Table[Sum[Prime[k]^5,{k,1,n}],{n,1,1000}],PrimeQ[ #1]&]

Formula

a(n) = A122103[ A122125[n] ].

A122102 a(n) = Sum_{k=1..n} prime(k)^4.

Original entry on oeis.org

16, 97, 722, 3123, 17764, 46325, 129846, 260167, 540008, 1247289, 2170810, 4044971, 6870732, 10289533, 15169214, 23059695, 35177056, 49022897, 69174018, 94585699, 122983940, 161934021, 209392342, 272134583, 360663864, 464724265, 577275146, 708354747, 849512908
Offset: 1

Views

Author

Alexander Adamchuk, Aug 20 2006

Keywords

Comments

a(n) is prime for n = {2,32,90,110,134,152,168,180,194,...} = A122127.

Crossrefs

Partial sums of A030514.

Programs

  • Magma
    [&+[NthPrime(k)^4: k in [1..n]]: n in [1..30]]; // G. C. Greubel, Oct 02 2019
    
  • Maple
    seq(add(ithprime(k)^4, k=1..n), n=1..30); # G. C. Greubel, Oct 02 2019
  • Mathematica
    Table[Sum[Prime[k]^4,{k,1,n}],{n,1,100}]
    Accumulate[Prime[Range[30]]^4] (* Harvey P. Dale, Aug 07 2021 *)
  • PARI
    a(n)=my(s);forprime(p=2,prime(n),s+=p^4); s \\ Charles R Greathouse IV, Aug 02 2013
    
  • Sage
    [sum(nth_prime(k)^4 for k in (1..n)) for n in (1..30)] # G. C. Greubel, Oct 02 2019

Formula

From Vladimir Shevelev, Aug 02 2013: (Start)
a(n) = 0.2*n^5*log(n)^4 + O(n^5*log(n)^3*log(log(n))). The proof is similar to proof for A007504(n) (see link of Shevelev).
A generalization: Sum_{i=1..n} prime(i)^k = 1/(k+1)*n^(k+1)*log(n)^k + O(n^(k+1)*log(n)^(k-1)*log(log(n))).
(End)

A122138 Indices k such that A122136(k) is a prime.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 11, 12, 14, 15, 18, 20, 22, 23, 26, 27, 32, 36, 38, 39, 40, 44, 47, 48, 50, 51, 52, 54, 55, 56, 58, 59, 60, 64, 66, 68, 71, 72, 74, 76, 78, 80, 83, 84, 86, 88, 89, 90, 92, 94, 95, 96, 98, 100, 102, 103, 107, 108, 110, 112, 114, 116, 118, 120, 122, 126
Offset: 1

Views

Author

Alexander Adamchuk, Aug 21 2006

Keywords

Comments

The corresponding primes are listed in A122139.

Crossrefs

Programs

  • Mathematica
    Select[Range[200],PrimeQ[Numerator[Sum[Prime[k]^2,{k,1,#1}]/Product[Prime[k],{k,1,#1}]]]&]

A133550 Sum of fifth powers of n odd primes.

Original entry on oeis.org

243, 3368, 20175, 181226, 552519, 1972376, 4448475, 10884818, 31395967, 60025118, 129369075, 245225276, 392233719, 621578726, 1039774219, 1754698518, 2599294819, 3949419926, 5753649277, 7826720870, 10903777269, 14842817912
Offset: 1

Views

Author

Artur Jasinski, Sep 16 2007

Keywords

Examples

			a(2)=3368 because 3^5+5^5 = 3368.
		

Crossrefs

Programs

  • Mathematica
    c = 5; a = {}; b = 0; Do[b = b + Prime[n]^c; AppendTo[a, b], {n, 2, 1000}]; a

Formula

a(n) = A122103(n+1)-32.

A118219 Smallest number k>1 such that Sum_{i=1..k} Prime[i]^n divides Product_{i=1..k} Prime[i]^n.

Original entry on oeis.org

3, 30, 17, 248, 515, 49682
Offset: 1

Views

Author

Alexander Adamchuk, Feb 24 2007

Keywords

Comments

a(7)>991430. - Robert G. Wilson v, Mar 02 2007

Examples

			a(1) = 3 because 2 + 3 + 5 = 10 divides 2*3*5 = 30 but 2 + 3 = 5 does not divide 2*3 = 6.
		

Crossrefs

Cf. A051838 = Sum of first n primes divides product of first n primes. Cf. A125314 = Smallest number k>1 such that Sum_{i=1..k} i^n divides Product_{i=1..k} i^n. Cf. A007504, A002110, A024450, A098999, A122102, A122103.

Programs

  • Mathematica
    f[n_] := Block[{k = 2, p = 2, s = 2^n}, While[p = p*Prime@ k; s = s + Prime@ k^n; PowerMod[p, n, s] != 0, k++ ]; k]; Do[ Print@ f@n, {n, 10}] (* Robert G. Wilson v *)

Extensions

a(6) from Robert G. Wilson v, Mar 02 2007

A122124 Numbers n such that 25 divides Sum[ Prime[k]^n, {k,1,n}].

Original entry on oeis.org

3, 5, 7, 11, 15, 19, 23, 25, 27, 31, 35, 39, 43, 45, 47, 51, 55, 59, 63, 65, 67, 71, 75, 79, 83, 85, 87, 91, 95, 99, 103, 105, 107, 111, 115, 119, 123, 125, 127, 131, 135, 139, 143, 145, 147, 151, 155, 159, 163, 165, 167, 171, 175, 179, 183, 185, 187, 191, 195, 199
Offset: 1

Views

Author

Alexander Adamchuk, Aug 21 2006, Sep 18 2006, Sep 21 2006

Keywords

Comments

a(n) up to a(7) = 23 coincides with A007665[n+1] = Tower of Hanoi with 5 pegs. It appears that a(n) includes all A007665[n] = {1, 3, 5, 7, 11, 15, 19, 23, 27, 31, 39, 47, 55, 63, 71, 79, 87, 95, 103, 111, 127, 143, 159, 175, 191, 207, 223, 239, 255, 271, 287, 303, 319, 335, 351, 383, 415, 447, 479, 511, 543, 575, 607, 639, 671, 703, 735, 767, 799, ...} except A007665[1] = 1.
Primes in this sequence include 5 and all primes of the form 4k+3, A002145[n]. Terms include all numbers of the form 10k+5 (with nonnegative k), A017329[n].

Examples

			There are 25 primes p < 100, p(n) = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}.
a(1) = because 25 divides Sum[p(n)^3,{n,1,25}] = 2^3 + 3^3 + ... + 89^3 + 97^3 = A098999[25] and does not divide Sum[p(n)^1,{n,1,25}] = A007504[25] and Sum[p(n)^2,{n,1,25}] = A024450[25].
The next a(2) = 5 because 25 divides Sum[p(n)^5,{n,1,25}] = A122103[25] and does not divide Sum[p(n)^4,{n,1,25}] = A122102[25].
		

Crossrefs

Programs

  • Mathematica
    Select[Range[300],IntegerQ[Sum[ Prime[k]^#1, {k,1,25}]/25]&]
  • PARI
    for(n=1,100,if(sum(k=1,25,prime(k)^n)%25==0,print1(n,",")));
    print;print("Alternative method not using primes:");
    for(n=1,100,m=(n-1)%6;print1((n-m)*3+(n-m+if(m>1,(m-1)*12-1,m*6-1))/3,",")) \\ K. Spage, Oct 23 2009
Showing 1-9 of 9 results.