cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A124302 Number of set partitions with at most 3 blocks; number of Dyck paths of height at most 4; dimension of space of symmetric polynomials in 3 noncommuting variables.

Original entry on oeis.org

1, 1, 2, 5, 14, 41, 122, 365, 1094, 3281, 9842, 29525, 88574, 265721, 797162, 2391485, 7174454, 21523361, 64570082, 193710245, 581130734, 1743392201, 5230176602, 15690529805, 47071589414, 141214768241, 423644304722, 1270932914165, 3812798742494, 11438396227481
Offset: 0

Views

Author

Mike Zabrocki, Oct 25 2006

Keywords

Comments

Row sums of triangle in A056241. - Philippe Deléham, Oct 30 2006
Row sums of triangle in A147746. - Philippe Deléham, Dec 04 2008
Hankel transform is := [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...]. - Philippe Deléham, Dec 04 2008
Number of nonisomorphic graded posets with 0 and 1 and uniform Hasse graph of rank n with no 3-element antichain. (Uniform used in the sense of Retakh, Serconek and Wilson. Graded used in Stanley's sense that every maximal chain has the same length n.) - David Nacin, Feb 26 2012
Number of Dyck paths of length 2n and height at most 4. - Ira M. Gessel, Aug 06 2012

Examples

			There are 15 set partitions of {1,2,3,4}, only {{1},{2},{3},{4}} has more than 3 blocks, so a(4) = 14.
G.f. = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 41*x^5 + 122*x^6 + 365*x^7 + ...
		

References

  • R. Stanley, Enumerative combinatorics, Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.

Crossrefs

Essentially the same as A007051.

Programs

  • Magma
    I:=[1, 1, 2]; [n le 3 select I[n] else  4*Self(n-1) - 3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 25 2012
    
  • Maple
    a:= proc(n); if n<3 then [1,1,2][n+1]; else 4*a(n-1)-3*a(n-2); fi; end:
    # Mike Zabrocki, Oct 25 2006
    with(GraphTheory): G:=PathGraph(5): A:= AdjacencyMatrix(G): nmax:=27; for n from 0 to 2*nmax do B(n):=A^n; b(n):=B(n)[1,1]; od: for n from 0 to nmax do a(n):=b(2*n) od: seq(a(n),n=0..nmax);
    # Johannes W. Meijer, May 29 2010
  • Mathematica
    a=Exp[x]-1; Range[0, 20]! CoefficientList[Series[1+a+a^2/2+a^3/6, {x,0,20}],x]
    Join[{1}, LinearRecurrence[{4, -3}, {1, 2}, 20]] (* David Nacin, Feb 26 2012 *)
    CoefficientList[Series[1 / (1 - x / (1 - x / (1 - x / (1 - x)))), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 25 2012 *)
    Table[Sum[StirlingS2[n,k],{k,0,3}],{n,0,30}] (* Robert A. Russell, Mar 29 2018 *)
  • PARI
    {a(n) = if( n<1, n==0, (3^(n-1) + 1) / 2)}; /* Michael Somos, Apr 03 2014 */
  • Python
    def a(n, adict={0:1, 1:1, 2:2}):
        if n in adict:
            return adict[n]
        adict[n]=4*a(n-1) - 3*a(n-2)
        return adict[n] # David Nacin, Mar 04 2012
    

Formula

O.g.f.: (q^2 - 3*q + 1)/(3*q^2 - 4*q + 1) = Sum_{k=0..3} (q^k/Product_{i=1..k} (1-i*q)).
a(n) = 4*a(n-1) - 3*a(n-2); a(0) = 1, a(1) = 1, a(2) = 2, a(n) = Sum_{k=1..3} A008277(n,k).
Inverse binomial transform of A007581. - Philippe Deléham, Oct 30 2006
a(n) = Sum_{k=0..n} A056241(n,k), n >= 1. - Philippe Deléham, Oct 30 2006
a(0) = 1, a(n) = (3^(n-1) + 1)/2 for n >= 1, see A007051. - Philippe Deléham, Oct 30 2006
E.g.f.: (2 + 3*exp(x) + exp(3x))/6.
G.f.: 1 / (1 - x / (1 - x / (1 - x / (1 - x)))). - Michael Somos, May 03 2012
G.f.: 1 + x + 3*x^2*U(0)/2 where U(k) = 1 + 2/(3*3^k + 3*3^k/(1 - 18*x*3^k/ (9*x*3^k - 1/U(k+1)))); (continued fraction, 4-step). - Sergei N. Gladkovskii, Nov 01 2012
G.f.: 1+x*G(0) where G(k) = 1 + 2*x/( 1-2*x - x*(1-2*x)/(x + (1-2*x)*2/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 10 2012
a(n) = Sum_{k=0..3} Stirling2(n,k). - Robert A. Russell, Mar 29 2018
G.f.: Sum_{j=0..k} A248925(k,j)*x^j / Product_{j=1..k} 1-j*x with k=3. - Robert A. Russell, Apr 25 2018

A080937 Number of Catalan paths (nonnegative, starting and ending at 0, step +/-1) of 2*n steps with all values <= 5.

Original entry on oeis.org

1, 1, 2, 5, 14, 42, 131, 417, 1341, 4334, 14041, 45542, 147798, 479779, 1557649, 5057369, 16420730, 53317085, 173118414, 562110290, 1825158051, 5926246929, 19242396629, 62479659622, 202870165265, 658715265222, 2138834994142, 6944753544643, 22549473023585
Offset: 0

Views

Author

Henry Bottomley, Feb 25 2003

Keywords

Comments

With interpolated zeros (1,0,1,0,2,...), counts closed walks of length n at start or end node of P_6. The sequence (0,1,0,2,...) counts walks of length n between the start and second node. - Paul Barry, Jan 26 2005
HANKEL transform of sequence and the sequence omitting a(0) is the sequence A130716. This is the unique sequence with that property. - Michael Somos, May 04 2012
From Wolfdieter Lang, Mar 30 2020: (Start)
a(n) is also the upper left entry of the n-th power of the 3 X 3 tridiagonal matrix M_3 = Matrix([1,1,0], [1,2,1], [0,1,2]) from A332602: a(n) = ((M_3)^n)[1,1].
Proof: (M_3)^n = b(n-2)*(M_3)^2 - (6*b(n-3) - b(n-4))*M_3 + b(n-3)*1_3, for n >= 0, with b(n) = A005021(n), for n >= -4. For the proof of this see a comment in A005021. Hence (M_3)^n[1,1] = 2*b(n-2) - 5*b(n-3) + b(n-4), for n >= 0. This proves the 3 X 3 part of the conjecture in A332602 by Gary W. Adamson.
The formula for a(n) given below in terms of r = rho(7) = A160389 proves that a(n)/a(n-1) converges to rho(7)^2 = A116425 = 3.2469796..., because r - 2/r = 0.6920... < 1, and r^2 - 3 = 0.2469... < 1. This limit was conjectured in A332602 by Gary W. Adamson.
(End)

Examples

			G.f. = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 131*x^6 + 417*x^7 + 1341*x^8 + ...
		

Crossrefs

Cf. A033191 which essentially provide the same sequence for different limits and tend to A000108.

Programs

  • Magma
    I:=[1,1,2]; [n le 3 select I[n] else 5*Self(n-1)-6*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jan 09 2016
  • Maple
    a:= n-> (<<0|1|0>, <0|0|1>, <1|-6|5>>^n. <<1, 1, 2>>)[1, 1]:
    seq(a(n), n=0..35);  # Alois P. Heinz, Nov 09 2012
  • Mathematica
    nn=56;Select[CoefficientList[Series[(1-4x^2+3x^4)/(1-5x^2+6x^4-x^6), {x,0,nn}], x],#>0 &] (* Geoffrey Critzer, Jan 26 2014 *)
    LinearRecurrence[{5,-6,1},{1,1,2},30] (* Jean-François Alcover, Jan 09 2016 *)
  • PARI
    a=vector(99); a[1]=1; a[2]=2;a[3]=5; for(n=4,#a,a[n]=5*a[n-1]-6*a[n-2] +a[n-3]); a \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    {a(n) = if( n<0, n = -n; polcoeff( (1 - 3*x + x^2) / (1 - 6*x + 5*x^2 - x^3) + x * O(x^n), n), polcoeff( (1 - 4*x + 3*x^2) / (1 - 5*x + 6*x^2 - x^3) + x * O(x^n), n))} /* Michael Somos, May 04 2012 */
    

Formula

a(n) = A080934(n,5).
G.f.: (1-4*x+3*x^2)/(1-5*x+6*x^2-x^3). - Ralf Stephan, May 13 2003
a(n) = 5*a(n-1) - 6*a(n-2) + a(n-3). - Herbert Kociemba, Jun 11 2004
a(n) = A096976(2*n). - Floor van Lamoen, Nov 02 2005
a(n) = (4/7-4/7*cos(1/7*Pi)^2)*(4*(cos(Pi/7))^2)^n + (1/7-2/7*cos(1/7*Pi) + 4/7*cos(1/7*Pi)^2)*(4*(cos(2*Pi/7))^2)^n + (2/7+2/7*cos(1/7*Pi))*(4*(cos(3*Pi/7))^2)^n for n>=0. - Richard Choulet, Apr 19 2010
G.f.: 1 / (1 - x / (1 - x / (1 - x / (1 - x / (1 - x))))). - Michael Somos, May 04 2012
a(-n) = A038213(n). a(n + 2) * a(n) - a(n + 1)^2 = a(1 - n). Convolution inverse is A123183 with A123183(0)=1. - Michael Somos, May 04 2012
From Wolfdieter Lang, Mar 30 2020: (Start)
In terms of the algebraic number r = rho(7) = A160389 of degree 3 the formula given by Richard Choulet becomes a(n) = (1/7)*(r)^(2*n)*(C1(r) + C2(r)*(r - 2/r)^(2*n) + C3(r)*(r^2 - 3)^(2*n)), with C1(r) = 4 - r^2, C2(r) = 1 - r + r^2, and C3 = 2 + r.
a(n) = ((M_3)^n)[1,1] = 2*b(n-2) - 5*b(n-3) + b(n-4), for n >= 0, with the 3 X 3 tridiagonal matrix M_3 = Matrix([1,1,0], [1,2,1], [0,1,2]) from A332602, and b(n) = A005021(n) (with offset n >= -4). (End)
Showing 1-2 of 2 results.