Original entry on oeis.org
1, 11, 101, 781, 5611, 39161, 270281, 1857451, 12744061, 87382901, 599019851, 4105974961, 28143378001, 192899171531, 1322154751061, 9062194370461, 62113232767531, 425730505493801, 2918000490238361, 20000273409331051, 137083914639998701, 939587132382262661
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- John Cerkan, Table of n, a(n) for n = 0..1187
- Dov Jarden, Recurring Sequences, Riveon Lematematika, Jerusalem, 1966. [Annotated scanned copy] See p. 20.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (11, -33, 33, -11, 1).
-
A001603:=-(1+13*z**2+z**4)/(z-1)/(z**2-3*z+1)/(z**2-7*z+1); # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
-
5 #^2 - 5 # + 1 &@ Fibonacci@ # & /@ Range[1, 43, 2] (* Michael De Vlieger, Apr 03 2017 *)
A133320
Numbers k such that both A124296(k) = 5*F(k)^2 - 5*F(k) + 1 and A124297(k) = 5*F(k)^2 + 5*F(k) + 1 are prime, where F(k) = Fibonacci(k).
Original entry on oeis.org
3, 4, 5, 10, 40
Offset: 1
Cf.
A124297 (5*F(n)^2 + 5*F(n) + 1, where F(n) = Fibonacci(n)).
Cf.
A124296 (5*F(n)^2 - 5*F(n) + 1, where F(n) = Fibonacci(n)).
-
Do[ F=Fibonacci[n]; f=5*F^2-5*F+1; g=5*F^2+5*F+1; If[ PrimeQ[f], If[ PrimeQ[g], Print[ {n,f,g} ] ] ], {n,1,1000} ]
A001946
a(n) = 11*a(n-1) + a(n-2).
Original entry on oeis.org
2, 11, 123, 1364, 15127, 167761, 1860498, 20633239, 228826127, 2537720636, 28143753123, 312119004989, 3461452808002, 38388099893011, 425730551631123, 4721424167835364, 52361396397820127, 580696784543856761, 6440026026380244498, 71420983074726546239
Offset: 0
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 139.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..200
- Tanya Khovanova, Recursive Sequences
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)
- Index entries for linear recurrences with constant coefficients, signature (11, 1).
-
[ Lucas(5*n) : n in [0..100]]; // Vincenzo Librandi, Apr 14 2011
-
A001946:=(-2+11*z)/(-1+11*z+z**2); # Conjectured by Simon Plouffe in his 1992 dissertation
-
Table[Fibonacci[5n-1]+Fibonacci[5n+1],{n,0,30}] (* Alexander Adamchuk, Oct 25 2006 *)
LinearRecurrence[{11,1},{2,11},20] (* Harvey P. Dale, Jan 25 2024 *)
A124297
a(n) = 5*F(n)^2 + 5*F(n) + 1, where F(n) = Fibonacci(n).
Original entry on oeis.org
1, 11, 11, 31, 61, 151, 361, 911, 2311, 5951, 15401, 40051, 104401, 272611, 712531, 1863551, 4875781, 12760031, 33398201, 87424711, 228859951, 599129311, 1568486161, 4106261531, 10750188961, 28144128251, 73681909211, 192901135711
Offset: 0
-
Table[5*Fibonacci[n]^2+5*Fibonacci[n]+1,{n,0,50}]
LinearRecurrence[{4,-2,-6,4,2,-1},{1,11,11,31,61,151},30] (* Harvey P. Dale, Feb 23 2023 *)
-
a(n)=subst(5*t*(t+1)+1,t,fibonacci(n)) \\ Charles R Greathouse IV, Jan 03 2013
Original entry on oeis.org
11, 31, 151, 911, 5951, 40051, 272611, 1863551, 12760031, 87424711, 599129311, 4106261531, 28144128251, 192901135711, 1322159893351, 9062207833151, 62113268013311, 425730597768451, 2918000731816531, 20000274041790911, 137083916295800111, 939587136717207031, 6440026032054760351
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- John Cerkan, Table of n, a(n) for n = 0..1187
- Dov Jarden, Recurring Sequences, Riveon Lematematika, Jerusalem, 1966. [Annotated scanned copy] See p. 20.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (11, -33, 33, -11, 1).
-
A001604:=-(11-90*z+173*z**2-90*z**3+11*z**4)/(z-1)/(z**2-3*z+1)/(z**2-7*z+1); # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
-
5 #^2 + 5 # + 1 &@ Fibonacci@ # & /@ Range[1, 45, 2] (* Michael De Vlieger, Apr 03 2017 *)
A156094
5 F(2n) (F(2n) - 1) + 1 where F(n) denotes the n-th Fibonacci number.
Original entry on oeis.org
1, 1, 31, 281, 2101, 14851, 102961, 708761, 4865911, 33372361, 228792301, 1568309051, 10749725281, 73680695281, 505017569551, 3461448647801, 23725139605861, 162614572159411, 1114576979567761, 7639424583421961, 52361395886149351
Offset: 0
-
a[n_Integer] := 5 Fibonacci[2n] (Fibonacci[2n] - 1) + 1
5(#*(#-1))&/@Fibonacci[Range[0,40,2]]+1 (* Harvey P. Dale, Jan 06 2013 *)
A156095
5 F(2n) (F(2n) + 1) + 1 where F(n) denotes the n-th Fibonacci number.
Original entry on oeis.org
1, 11, 61, 361, 2311, 15401, 104401, 712531, 4875781, 33398201, 228859951, 1568486161, 10750188961, 73681909211, 505020747661, 3461456968201, 23725161388951, 162614629188281, 1114577128871281, 7639424974303651, 52361396909490901
Offset: 0
Showing 1-7 of 7 results.
Comments