cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A129445 Numbers k > 0 such that k^2 is a centered triangular number.

Original entry on oeis.org

1, 2, 8, 19, 79, 188, 782, 1861, 7741, 18422, 76628, 182359, 758539, 1805168, 7508762, 17869321, 74329081, 176888042, 735782048, 1751011099, 7283491399, 17333222948, 72099131942, 171581218381, 713707828021, 1698478960862, 7064979148268, 16813208390239
Offset: 1

Views

Author

Alexander Adamchuk, Apr 15 2007, Apr 26 2007

Keywords

Comments

Corresponding numbers n such that centered triangular number A005448(n) is a perfect square are listed in A129444(n).
Consider Diophantine equation 3*x*(x-1) + 2 - 2*y^2 = 0. Sequence gives solutions for y. - Zak Seidov, Jun 11 2013
Positive values of x (or y) satisfying x^2 - 10xy + y^2 + 15 = 0. - Colin Barker, Feb 09 2014
Nonnegative values of x of solutions (x, y) to the Diophantine equation 8*x^2 - 3*y^2 = 5. - Jon E. Schoenfield, Feb 02 2021

Crossrefs

Prime terms are listed in A129446.
Cf. A125602 (prime CTN), A184481 (semiprime CTN), A125603.

Programs

  • Mathematica
    Do[f = 3n(n-1)/2 + 1; If[IntegerQ[Sqrt[f]], Print[Sqrt[f]]], {n, 150000}]
    LinearRecurrence[{0, 10, 0, -1}, {1, 2, 8, 19}, 30] (* T. D. Noe, Jun 13 2013 *)

Formula

a(n) = sqrt(3*A129444(n)*(A129444(n) - 1)/2 + 1).
G.f.: x*(1-x)*(1+3*x+x^2)/(1-10*x^2+x^4). - Colin Barker, Apr 11 2012
a(n) = 10*a(n-2) - a(n-4), a(1..4) = 1, 2, 8, 19. - Zak Seidov, Jun 11 2013

Extensions

More terms from Alexander Adamchuk, Apr 26 2007

A125602 Centered triangular numbers that are prime.

Original entry on oeis.org

19, 31, 109, 199, 409, 571, 631, 829, 1489, 1999, 2341, 2971, 3529, 4621, 4789, 7039, 7669, 8779, 9721, 10459, 10711, 13681, 14851, 16069, 16381, 17659, 20011, 20359, 23251, 25939, 27541, 29191, 29611, 31321, 34429, 36739, 40099, 40591, 42589
Offset: 1

Views

Author

Zak Seidov, Nov 27 2006

Keywords

Comments

Prime terms in A005448, or primes of the form 3n(n-1)/2 + 1.
Primes that are the sum of 3 consecutive triangular numbers. - Vicente Izquierdo Gomez, Nov 03 2015

Crossrefs

Programs

  • Magma
    [a: n in [0..200] | IsPrime(a) where a is  (3*n^2 - 3*n + 2) div 2]; // Vincenzo Librandi, Mar 22 2013
    
  • Maple
    select(isprime, [seq(3*n*(n-1)/2+1, n=1..1000)]); # Robert Israel, Nov 03 2015
  • Mathematica
    lst={};Do[If[PrimeQ[p=3n(n-1)/2+1], (*Print[p];*)AppendTo[lst, p]], {n, 10^3}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 21 2008 *)
    Select[Total/@Partition[Accumulate[Range[200]],3,1],PrimeQ] (* Harvey P. Dale, Dec 29 2020 *)
  • PARI
    is(n)=n%6==1 && ispolygonal((n-1)/3,3) && isprime(n) \\ Charles R Greathouse IV, Nov 03 2015
Showing 1-2 of 2 results.