cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A129445 Numbers k > 0 such that k^2 is a centered triangular number.

Original entry on oeis.org

1, 2, 8, 19, 79, 188, 782, 1861, 7741, 18422, 76628, 182359, 758539, 1805168, 7508762, 17869321, 74329081, 176888042, 735782048, 1751011099, 7283491399, 17333222948, 72099131942, 171581218381, 713707828021, 1698478960862, 7064979148268, 16813208390239
Offset: 1

Views

Author

Alexander Adamchuk, Apr 15 2007, Apr 26 2007

Keywords

Comments

Corresponding numbers n such that centered triangular number A005448(n) is a perfect square are listed in A129444(n).
Consider Diophantine equation 3*x*(x-1) + 2 - 2*y^2 = 0. Sequence gives solutions for y. - Zak Seidov, Jun 11 2013
Positive values of x (or y) satisfying x^2 - 10xy + y^2 + 15 = 0. - Colin Barker, Feb 09 2014
Nonnegative values of x of solutions (x, y) to the Diophantine equation 8*x^2 - 3*y^2 = 5. - Jon E. Schoenfield, Feb 02 2021

Crossrefs

Prime terms are listed in A129446.
Cf. A125602 (prime CTN), A184481 (semiprime CTN), A125603.

Programs

  • Mathematica
    Do[f = 3n(n-1)/2 + 1; If[IntegerQ[Sqrt[f]], Print[Sqrt[f]]], {n, 150000}]
    LinearRecurrence[{0, 10, 0, -1}, {1, 2, 8, 19}, 30] (* T. D. Noe, Jun 13 2013 *)

Formula

a(n) = sqrt(3*A129444(n)*(A129444(n) - 1)/2 + 1).
G.f.: x*(1-x)*(1+3*x+x^2)/(1-10*x^2+x^4). - Colin Barker, Apr 11 2012
a(n) = 10*a(n-2) - a(n-4), a(1..4) = 1, 2, 8, 19. - Zak Seidov, Jun 11 2013

Extensions

More terms from Alexander Adamchuk, Apr 26 2007

A276261 Centered 21-gonal primes.

Original entry on oeis.org

127, 211, 757, 2521, 2857, 6301, 8527, 16381, 19867, 23689, 24697, 27847, 32341, 37171, 38431, 42337, 66361, 68041, 82237, 89839, 97777, 103951, 114661, 140071, 152461, 162751, 170689, 192781, 204331, 216217, 231547, 240997, 284131, 308827, 353557, 357421, 385057, 389089
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 26 2016

Keywords

Comments

Primes of the form (21*k^2 + 21*k + 2)/2.
Numbers k such that (21*k^2 + 21*k + 2)/2 is prime: 3, 4, 8, 15, 16, 24, 28, 39, 43, 47, 48, 51, 55, 059, 60, 63, 79, 80, 88, 92, 96, 99, ...

Crossrefs

Cf. similar sequences of the centered k-gonal primes: A125602 (k = 3), A027862 (k = 4), A145838 (k = 5), A002407 (k = 6), A144974 (k = 7), A090562 (k = 10), A262344 (k = 11), A262493 (k = 13), A264821 (k = 14), A264822 (k = 15), A264823 (k = 16), A264824 (k = 17), A264825 (k = 18), A264844 (k = 19), A264845 (k = 20), A201715 (k = 24).

Programs

  • Mathematica
    Intersection[Table[(21 k^2 + 21 k + 2)/2, {k, 0, 1000}], Prime[Range[33000]]]
  • PARI
    lista(nn) = for(n=1, nn, if(isprime(p=(21*n^2 + 21*n + 2)/2), print1(p, ", "))); \\ Altug Alkan, Aug 26 2016

A269414 Prime numbers that are the sum of one or more consecutive triangular numbers.

Original entry on oeis.org

3, 19, 31, 83, 109, 199, 251, 409, 571, 631, 683, 829, 1091, 1489, 1999, 2341, 2531, 2971, 3529, 4621, 4789, 5051, 7039, 7211, 7669, 8779, 9721, 10459, 10711, 11171, 13681, 14851, 15131, 16069, 16381, 16883, 17659, 18731, 20011, 20359, 21683, 23251, 24851
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 25 2016

Keywords

Crossrefs

A125603 Numbers n such that 3n(n-1)/2 + 1 is prime.

Original entry on oeis.org

4, 5, 9, 12, 17, 20, 21, 24, 32, 37, 40, 45, 49, 56, 57, 69, 72, 77, 81, 84, 85, 96, 100, 104, 105, 109, 116, 117, 125, 132, 136, 140, 141, 145, 152, 157, 164, 165, 169, 172, 181, 185, 189, 192, 196, 204, 205, 216, 217, 220, 221, 224, 245, 257, 264, 269, 272, 277
Offset: 1

Views

Author

Zak Seidov, Nov 27 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[300],PrimeQ[3# (#-1)/2+1]&] (* Harvey P. Dale, Mar 09 2017 *)
  • PARI
    isok(n) = isprime(3*n*(n-1)/2 + 1); \\ Michel Marcus, Oct 11 2013

A184481 Semiprime centered triangular numbers.

Original entry on oeis.org

4, 10, 46, 85, 166, 235, 274, 361, 514, 694, 901, 1135, 1219, 1306, 1585, 1891, 2461, 2839, 3106, 3385, 3826, 3979, 4135, 5311, 5674, 6049, 6241, 6835, 7246, 8551, 9481, 10966, 11485, 11749, 12286, 12559, 13969, 15151, 15454, 17335, 18649, 18985, 19666, 21421, 21781, 22879, 23626, 24385, 26734, 27949, 28774, 30034, 32194, 33079, 33526
Offset: 1

Views

Author

Jonathan Vos Post, Feb 12 2011

Keywords

Comments

Numbers of the form 3*n*(n-1)/2 + 1 = p*q where p and q are primes, not necessarily distinct. This is to semiprimes A001358 as A125602 is to primes A000040.

Examples

			a(3) = 3*6(6-1)/2 + 1 = 10 = 2 * 5.
		

Crossrefs

Programs

  • Mathematica
    SemiprimeQ[n_] := Total[FactorInteger[n]][[2]] == 2; Select[Table[3*n (n - 1)/2 + 1, {n, 150}], SemiprimeQ]
    Select[Table[(3n(n-1))/2+1,{n,200}],PrimeOmega[#]==2&] (* Harvey P. Dale, May 13 2012 *)

Formula

A001358 INTERSECTION A005448.

A257974 Prime numbers that are not the sum of one or more consecutive triangular numbers.

Original entry on oeis.org

2, 5, 7, 11, 13, 17, 23, 29, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 89, 97, 101, 103, 107, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 211, 223, 227, 229, 233, 239, 241, 257, 263, 269, 271, 277, 281, 283
Offset: 1

Views

Author

Keywords

Comments

Subsequence of primes of A050941. - Michel Marcus, Dec 14 2015
Prime numbers that are not the difference of two tetrahedral numbers (A000292). - Franklin T. Adams-Watters, Dec 16 2015

Examples

			From _Michael De Vlieger_, Nov 06 2015: (Start)
3 is a triangular number thus is not a term.
The triangular numbers <= 7 are {1, 3, 6}. None of these are 7. 7 is not found among the sums of adjacent pairs of terms, i.e., {{1, 3}, {3, 6}} = {4, 9}. The sum of all numbers {1, 3, 6} = 10. Thus 7 is a term.
The triangular numbers <= 19 are {1, 3, 6, 10, 15}. 19 is not a triangular number. 19 is not found among sums of pairs of adjacent terms {4, 9, 16, 25} nor among those of quartets of adjacent terms {20, 34}, but is found among sums of triples of adjacent terms {10, 19, 31}. Thus 19 is not a term. (End)
		

Crossrefs

Programs

  • Maple
    isA257974 := proc(n)
        if isprime(n) then
            return not isA034706(n) ;
        else
            false ;
        end if;
    end proc:
    for n from 0 to 400 do
        if isA257974(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Dec 14 2015
  • Mathematica
    t = Array[Binomial[# + 1, 2] &, {10^4}]; fQ[n_] := Block[{s}, s = TakeWhile[t, # <= n &]; AnyTrue[Flatten[Total /@ Partition[s, #, 1] & /@ Range[Length@ s - 1]], # == n &]]; Select[Prime@ Range@ 120, ! fQ@ # &] (* Michael De Vlieger, Nov 06 2015, Version 10 *)

Extensions

More terms from Michael De Vlieger, Nov 06 2015

A307493 Primes that are both centered triangular and centered square.

Original entry on oeis.org

16381, 23199907725541, 873105326726527441, 169377932722437899461, 532026300937919058017204151243671297356368598920355705257429996547710782877327451810988538831181
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 10 2019

Keywords

Comments

Primes that are the sum of three consecutive triangular numbers and the sum of two consecutive squares.
The next term is too large to include.

Crossrefs

Programs

  • Mathematica
    Select[LinearRecurrence[{195, -195, 1}, {1, 85, 16381}, 43], PrimeQ[#] &]
Showing 1-7 of 7 results.