Original entry on oeis.org
- L. E. Dickson, History of the Theory of Numbers, Volume 2, Chapter 21, page 587.
- E. Lucas, Recherches sur l'analyse indeterminee, Moulins, 1873, 92. Extract from Bull. Soc. d'Emulation du Departement de l'Allier, 12, 1873, 532.
A126200
Numbers n such that n^2 is a sum of consecutive cubes larger than 1.
Original entry on oeis.org
8, 27, 64, 125, 204, 216, 312, 315, 323, 343, 504, 512, 588, 720, 729, 1000, 1331, 1728, 2079, 2170, 2197, 2744, 2940, 3375, 4096, 4472, 4913, 4914, 5187, 5832, 5880, 5984, 6630, 6859, 7497, 8000, 8721, 8778, 9261, 9360, 10296, 10648, 10695, 11024, 12167, 13104
Offset: 1
204^2=23^3+24^3+25^3, 312^2=14^3+15^3+...24^3+25^3;
n^2=sum[i^3, (i=i1...i2)]; {n, i1=initial index of cube, i2=final index of cube}: {8, 4, 4}, {27, 9, 9}, {64, 16, 16}, {125, 25, 25}, {204, 23, 25}, {216, 36, 36}, {312, 14, 25}, {315, 25, 29}, {323, 9, 25}, {343, 49, 49}, {504, 28, 35}, {512, 64, 64}, {588, 14, 34}, {720, 25, 39}, {729, 81, 81}, {1000, 100, 100}, {1331, 121, 121}, {1728, 144, 144}, {2079, 33, 65}, {2170, 96, 100}, {2197, 169, 169}, {2744, 196, 196}.
-
mc=335241; cb=vector(mc); for(i=2, mc, cb[i]=i^3); v=vector(1000); mx=194104539^2; n=0; for(i=2, mc, s=0; for(j=i, mc, s=s+cb[j]; if(s>mx, next(2)); if(issquare(s,&sr), n++; v[n]=sr))); v=vecsort(v); for(i=1, 1000, write("b126200.txt", i " " v[i])) /* Donovan Johnson, Feb 02 2013 */
Many terms were missing - thanks to Donovan Johnson for catching this. (Feb 02 2013)
A253679
Numbers that begin a run of an odd number of consecutive integers whose cubes sum to a square.
Original entry on oeis.org
23, 118, 333, 716, 1315, 2178, 3353, 4888, 6831, 9230, 12133, 15588, 19643, 24346, 29745, 35888, 42823, 50598, 59261, 68860, 79443, 91058, 103753, 117576, 132575, 148798, 166293, 185108, 205291, 226890, 249953, 274528, 300663, 328406, 357805, 388908, 421763, 456418, 492921, 531320, 571663, 613998, 658373, 704836, 753435, 804218, 857233, 912528, 970151, 1030150, 1092573, 1157468
Offset: 1
For n=1, M(n)=3, a(n)=23, c(n)=204.
See "File Triplets (M,a,c) for M=(2n+1)" link.
- Vladimir Pletser, Table of n, a(n) for n = 1..50000
- Vladimir Pletser, File Triplets (M,a,c) for M=(2n+1)
- Vladimir Pletser, Number of terms, first term and square root of sums of consecutive cubed integers equal to integer squares, Research Gate, 2015.
- Vladimir Pletser, General solutions of sums of consecutive cubed integers equal to squared integers, arXiv:1501.06098 [math.NT], 2015.
- R. J. Stroeker, On the sum of consecutive cubes being a perfect square, Compositio Mathematica, 97 no. 1-2 (1995), pp. 295-307.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
for n from 1 to 50 do a:=(2*n+1)^3-(3*n+1): print (a); end do:
-
a253679[n_] := (2 # + 1)^3 - (3 # + 1) & /@ Range@ n; a253679[52] (* Michael De Vlieger, Jan 10 2015 *)
-
Vec(-x*(x^2-26*x-23)/(x-1)^4 + O(x^100)) \\ Colin Barker, Jan 09 2015
A253680
Numbers c(n) whose square are equal to the sum of an odd number M of consecutive cubed integers b^3 + (b+1)^3 + ... + (b+M-1)^3 = c(n)^2, starting at b(n) (A253679).
Original entry on oeis.org
204, 2940, 16296, 57960, 159060, 368004, 754320, 1412496, 2465820, 4070220, 6418104, 9742200, 14319396, 20474580, 28584480, 39081504, 52457580, 69267996, 90135240, 115752840, 146889204, 184391460, 229189296, 282298800, 344826300, 417972204, 503034840
Offset: 1
For n=1, M(n)=3, b(n)=23, c(n)=204.
See "File Triplets (M,b,c) for M=(2n+1)" link.
- Vladimir Pletser, Table of n, a(n) for n = 1..50000
- Vladimir Pletser, File Triplets (M,b,c) for M=(2n+1)
- Vladimir Pletser, Number of terms, first term and square root of sums of consecutive cubed integers equal to integer squares, Research Gate, 2015.
- Vladimir Pletser, General solutions of sums of consecutive cubed integers equal to squared integers, arXiv:1501.06098 [math.NT], 2015
- R. J. Stroeker, On the sum of consecutive cubes being a perfect square, Compositio Mathematica, 97 no. 1-2 (1995), pp. 295-307.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
-
[2*n*(n+1)*(2*n+1)*(8*n*(n+1)+1): n in [1..30]]; // Vincenzo Librandi, Feb 19 2015
-
restart: for n from 1 to 50000 do c:=2*n*(n+1)*(2*n+1)*(8*n*(n+1)+1): print (c); end do:
-
f[n_] := 2 n (n + 1) (2 n + 1) (8 n (n + 1) + 1); Array[f, 36] (* Michael De Vlieger, Jan 10 2015 *)
-
Vec(12*x*(x+1)*(17*x^2+126*x+17)/(x-1)^6 + O(x^100)) \\ Colin Barker, Jan 09 2015
A253681
Integer squares c^2 that are equal to the sum of an odd number M of consecutive cubed integers b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2 starting at b(n) (A253679).
Original entry on oeis.org
41616, 8643600, 265559616, 3359361600, 25300083600, 135426944016, 568998662400, 1995144950016, 6080268272400, 16566690848400, 41192058954816, 94910460840000, 205045101804816, 419208426176400, 817072496870400, 1527363954902016, 2751797699456400, 4798055269856016
Offset: 1
For n=1, M(1)=3, b(1)=23, c(1)=204, a(1)=c^2=41616.
See "File Triplets (M,b,c) for M=(2n+1)" link, [where in this File, M is the number of term, a the first term and c the square root of the sum].
- Vladimir Pletser, Table of n, a(n) for n = 1..50000
- Vladimir Pletser, File Triplets (M,b,c) for M=(2n+1)
- Vladimir Pletser, General solutions of sums of consecutive cubed integers equal to squared integers, arXiv:1501.06098 [math.NT], 2015.
- R. J. Stroeker, On the sum of consecutive cubes being a perfect square, Compositio Mathematica, 97 no. 1-2 (1995), pp. 295-307.
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
-
[(2*n*(n+1)*(2*n+1)*(8*n*(n+1)+1))^2: n in [1..20]]; // Vincenzo Librandi, Feb 19 2015
-
restart: for n from 1 to 50000 do a:=(2*n*(n+1)*(2*n+1)*(8*n*(n+1)+1))^2: print (a); end do:
-
f[n_] := (2 n (n + 1) (2 n + 1) (8 n (n + 1) + 1))^2; Array[f, 21] (* Michael De Vlieger, Jan 10 2015 *)
-
Vec(-144*x*(289*x^8 +56846*x^7 +1199784*x^6 +6296786*x^5 +10697390*x^4 +6296786*x^3 +1199784*x^2 +56846*x +289) / (x -1)^11 + O(x^100)) \\ Colin Barker, Jan 09 2015
A253707
Numbers M(n) which are the number of terms in the sums of consecutive cubed integers equaling a squared integer, b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2, for a first term b(n) being an odd squared integer (A016754).
Original entry on oeis.org
17, 98, 291, 644, 1205, 2022, 3143, 4616, 6489, 8810, 11627, 14988, 18941, 23534, 28815, 34832, 41633, 49266, 57779, 67220, 77637, 89078, 101591, 115224, 130025, 146042, 163323, 181916, 201869, 223230, 246047, 270368, 296241, 323714, 352835, 383652, 416213
Offset: 1
For n=1, b(n)=9, M(n)=17, c(n)=323 (see File Triplets link).
- Vladimir Pletser, Table of n, a(n) for n = 1..50000
- Vladimir Pletser, File Triplets (M,b,c) for a=(2n+1)^2
- Vladimir Pletser, Number of terms, first term and square root of sums of consecutive cubed integers equal to integer squares, Research Gate, 2015.
- Vladimir Pletser, General solutions of sums of consecutive cubed integers equal to squared integers, arXiv:1501.06098 [math.NT], 2015.
- R. J. Stroeker, On the sum of consecutive cubes being a perfect square, Compositio Mathematica, 97 no. 1-2 (1995), pp. 295-307.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
[n*(8*n*(n+1)+1): n in [1..40]]; // Vincenzo Librandi, Feb 19 2015
-
restart: for n from 1 to 50000 do a:= n*(8*n*(n+1)+1): print (a); end do:
-
f[n_] := n*(8 n (n + 1) + 1); Array[f, 52] (* Michael De Vlieger, Jan 10 2015 *)
LinearRecurrence[{4,-6,4,-1},{17,98,291,644},40] (* Harvey P. Dale, Jul 31 2018 *)
-
Vec(x*(x^2+30*x+17)/(x-1)^4 + O(x^100)) \\ Colin Barker, Jan 10 2015
A253708
Numbers c(n) whose squares are equal to the sums of consecutive cubed integers b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2, for a first term b(n) being an odd squared integer (A016754).
Original entry on oeis.org
323, 7497, 57618, 262430, 878445, 2399103, 5669972, 12026988, 23457735, 42785765, 73877958, 121874922, 193444433, 297057915, 443289960, 645140888, 918382347, 1281925953, 1758214970, 2373639030, 3158971893, 4149832247, 5387167548, 6917760900, 8794760975
Offset: 1
For n=1, b(n)=9, M(n)=17, a(n)=323.
See "File Triplets (M,b,c) for a=(2n+1)^2" link.
- Vladimir Pletser, Table of n, a(n) for n = 1..50000
- Vladimir Pletser, File Triplets (M,b,c) for a=(2n+1)^2
- Vladimir Pletser, Number of terms, first term and square root of sums of consecutive cubed integers equal to integer squares, Research Gate, 2015.
- Vladimir Pletser, General solutions of sums of consecutive cubed integers equal to squared integers, arXiv:1501.06098 [math.NT], 2015.
- R. J. Stroeker, On the sum of consecutive cubes being a perfect square, Compositio Mathematica, 97 no. 1-2 (1995), pp. 295-307.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
-
[(n*(n+1)/2)*(4*(2*n+1)^4-1): n in [1..30]]; // Vincenzo Librandi, Feb 19 2015
-
restart: for n from 1 to 50000 do a:= (n*(n+1)/2)(4*(2*n+1)^4-1): print (a); end do:
-
f[n_] := (n (n + 1)/2) (4 (2 n + 1)^4 - 1); Array[f, 33] (* Michael De Vlieger, Jan 10 2015 *)
-
Vec(-x*(323*x^4+5236*x^3+11922*x^2+5236*x+323)/(x-1)^7 + O(x^100)) \\ Colin Barker, Jan 14 2015
A253709
Integer squares c^2 that are equal to the sums of M (A253707) consecutive cubed integers equaling a squared integer, b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2, for a first term b(n) being an odd squared integer (A016754).
Original entry on oeis.org
104329, 56205009, 3319833924, 68869504900, 771665618025, 5755695204609, 32148582480784, 144648440352144, 550265331330225, 1830621686635225, 5457952678249764, 14853496612506084, 37420748658691489, 88243404864147225, 196505988636801600, 416206765369428544, 843426135281228409, 1643334148974958209, 3091319880732100900, 5634162244739340900
Offset: 1
For n=1, b(1)=9, M(1)=17, c(1)=323, a(1)= 104329 (see File File Triplets (M,b,c) for a=(2n+1)^2 link).
- Vladimir Pletser, Table of n, a(n) for n = 1..50000
- Vladimir Pletser, File Triplets (M,b,c) for a=(2n+1)^2
- Vladimir Pletser, General solutions of sums of consecutive cubed integers equal to squared integers, arXiv:1501.06098 [math.NT], 2015.
- R. J. Stroeker, On the sum of consecutive cubes being a perfect square, Compositio Mathematica, 97 no. 1-2 (1995), pp. 295-307.
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
-
[((n*(n+1)/2)*(4*(2*n+1)^4-1))^2: n in [1..20]]; // Vincenzo Librandi, Jan 15 2015
-
restart: for n from 1 to 50000 do a:=((n*(n+1)/2)(4*(2*n+1)^4-1))^2: print (a); end do:
-
f[n_] := ((n (n + 1)/2) (4 (2 n + 1)^4 - 1))^2; Array[f, 20] (* Michael De Vlieger, Jan 10 2015 *)
-
Vec(-x*(104329*x^10 +54848732*x^9 +2597306469*x^8 +30065816496*x^7 +119309063058*x^6 +186443360232*x^5 +119309063058*x^4 +30065816496*x^3 +2597306469*x^2 +54848732*x +104329) / (x -1)^13 + O(x^100)) \\ Colin Barker, Jan 10 2015
A253724
Numbers c(n) whose squares are equal to the sums of a number M(n) of consecutive cubed integers b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2, starting at b(n) (A002593) for M(n) being twice a squared integer (A001105).
Original entry on oeis.org
504, 8721, 65472, 312375, 1119528, 3293829, 8388096, 19131147, 39999000, 77947353, 143325504, 250991871, 421651272, 683434125, 1073737728, 1641349779, 2448874296, 3575480097, 5119992000, 7204344903, 9977420904, 13619289621, 18345871872, 24414046875
Offset: 2
For n=2, M(n)=8, b(n)=28, c(n)=504.
See "File Triplets (M,b,c) for M=2n^2" link.
- Vladimir Pletser, Table of n, a(n) for n = 2..50000
- Vladimir Pletser, File Triplets (M,b,c) for M=2n^2
- Vladimir Pletser, Number of terms, first term and square root of sums of consecutive cubed integers equal to integer squares, Research Gate, 2015.
- Vladimir Pletser, General solutions of sums of consecutive cubed integers equal to squared integers, arXiv:1501.06098 [math.NT], 2015.
- R. J. Stroeker, On the sum of consecutive cubes being a perfect square, Compositio Mathematica, 97 no. 1-2 (1995), pp. 295-307.
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
Cf.
A116108,
A116145,
A126200,
A126203,
A163392,
A163393,
A253679,
A253681,
A253707,
A253709,
A002593,
A253725.
-
[n^3*(4*n^4 - 1): n in [2..30]]; // Vincenzo Librandi, Feb 19 2015
-
restart: for n from 2 to 50000 do a:= n^3*(4*n^4 - 1): print (a); end do:
-
f[n_] := n^3 (4 n^4 - 1); Rest@Array[f, 32] (* Michael De Vlieger, Jan 28 2015 *)
-
Vec(-3*x^2*(x^7-8*x^6+27*x^5-216*x^4-1521*x^3-3272*x^2-1563*x-168)/(x-1)^8 + O(x^100)) \\ Colin Barker, Jan 14 2015
A253725
Integer squares c^2 that are equal to the sums of a number M(n) of consecutive cubed integers b^3 + (b+1)^3 + ... + (b+M-1)^3 = c^2, starting at b(n) (A002593) for M(n) being twice a squared integer (A001105).
Original entry on oeis.org
254016, 76055841, 4286582784, 97578140625, 1253342942784, 10849309481241, 70360154505216, 366000785535609, 1599920001000000, 6075789839706609, 20542200096854016, 62996919308080641, 177789795179217984, 467082203214515625, 1152912708530601984
Offset: 2
For n=2, M(n)=8, b(n)=28, c(n)=504, a(n)=c^2=254016.
See "File Triplets (M,b,c) for M=2n^2" link.
- Vladimir Pletser, Table of n, a(n) for n = 2..50000
- Vladimir Pletser, File Triplets (M,b,c) for M=2n^2
- Vladimir Pletser, General solutions of sums of consecutive cubed integers equal to squared integers, arXiv:1501.06098 [math.NT], 2015.
- R. J. Stroeker, On the sum of consecutive cubes being a perfect square, Compositio Mathematica, 97 no. 1-2 (1995), pp. 295-307.
- Index entries for linear recurrences with constant coefficients, signature (15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1).
Cf.
A116108,
A116145,
A126200,
A126203,
A163392,
A163393,
A253679,
A253680,
A253707,
A253708,
A002593,
A253724.
-
[(n^3*(4*n^4-1))^2: n in [2..20]]; // Vincenzo Librandi, Feb 19 2015
-
restart: for n from 2 to 50000 do a:=(n^3*(4*n^4 - 1))^2: print (a); end do:
-
f[n_] := (n^3 (4 n^4 - 1))^2; Rest[f /@ Range@16] (* Michael De Vlieger, Jan 28 2015 *)
LinearRecurrence[{15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1},{254016,76055841,4286582784,97578140625,1253342942784,10849309481241,70360154505216,366000785535609,1599920001000000,6075789839706609,20542200096854016,62996919308080641,177789795179217984,467082203214515625,1152912708530601984},20] (* Harvey P. Dale, Feb 18 2023 *)
Showing 1-10 of 12 results.
Comments