A126671
Triangle read by rows: row n (n>=0) has g.f. Sum_{i=1..n} n!*x^i*(1+x)^(n-i)/(n+1-i).
Original entry on oeis.org
0, 0, 1, 0, 1, 3, 0, 2, 7, 11, 0, 6, 26, 46, 50, 0, 24, 126, 274, 326, 274, 0, 120, 744, 1956, 2844, 2556, 1764, 0, 720, 5160, 16008, 28092, 30708, 22212, 13068, 0, 5040, 41040, 147120, 304464, 401136, 351504, 212976, 109584, 0, 40320
Offset: 1
Triangle begins:
0,
0, 1,
0, 1, 3,
0, 2, 7, 11,
0, 6, 26, 46, 50,
0, 24, 126, 274, 326, 274,
0, 120, 744, 1956, 2844, 2556, 1764,
0, 720, 5160, 16008, 28092, 30708, 22212, 13068,
0, 5040, 41040, 147120, 304464, 401136, 351504, 212976, 109584,
0, 40320, 367920, 1498320, 3582000, 5562576, 5868144, 4292496, 2239344, 1026576, ...
See
A126682 for the full pyramid of coefficients of the underlying polynomials.
-
for n from 1 to 15 do t1:=add( n!*x^i*(1+x)^(n-i)/(n+1-i), i=1..n); series(t1,x,100); lprint(seriestolist(%)); od:
-
Join[{{0}}, Reap[For[n = 1, n <= 15, n++, t1 = Sum[n!*x^i*(1+x)^(n-i)/(n+1-i), {i, 1, n}]; se = Series[t1, {x, 0, 100}]; Sow[CoefficientList[se, x]]]][[2, 1]]] // Flatten (* Jean-François Alcover, Jan 07 2014, after Maple *)
A193425
Expansion of e.g.f.: (1 - 2*x)^(-1/(1-x)).
Original entry on oeis.org
1, 2, 12, 96, 976, 12000, 172608, 2838528, 52474112, 1076451840, 24254069760, 595235266560, 15801350443008, 451082627014656, 13778232107286528, 448348123661598720, 15483358506138009600, 565560454279135887360
Offset: 0
E.g.f.: A(x) = 1 + 2*x + 12*x^2/2! + 96*x^3/3! + 976*x^4/4! + 12000*x^5/5! +...
where the logarithm involves sums of reciprocal binomial coefficients:
log(A(x)) = 2*x*(1) + (2*x)^2/2*(1 + 1) + (2*x)^3/3*(1 + 1/2 + 1) + (2*x)^4/4*(1 + 1/3 + 1/3 + 1) + (2*x)^5/5*(1 + 1/4 + 1/6 + 1/4 + 1) + (2*x)^6/6*(1 + 1/5 + 1/10 + 1/10 + 1/5 + 1) +...
Explicitly, the logarithm begins:
log(A(x)) = 2*x + 8*x^2/2! + 40*x^3/3! + 256*x^4/4! + 2048*x^5/5! + 19968*x^6/6! +...
in which the coefficients equal 2*A126674(n).
-
m:=50;
f:= func< x | Exp((&+[(&+[ 1/Binomial(n-1,k): k in [0..n-1]])*(2*x)^n/n: n in [1..m+2]])) >;
R:=PowerSeriesRing(Rationals(), m);
Coefficients(R!(Laplace( f(x) ))); // G. C. Greubel, Feb 02 2023
-
CoefficientList[Series[(1-2*x)^(-1/(1-x)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 27 2013 *)
-
{a(n)=n!*polcoeff(exp(sum(m=1,n,2^m*x^m/m*sum(k=0,m-1,1/binomial(m-1,k)))+x*O(x^n)),n)}
-
{a(n)=n!*polcoeff((1-2*x+x*O(x^n))^(-1/(1-x)),n)}
-
m=50
def f(x): return exp(sum(sum( 1/binomial(n-1,k) for k in range(n))*(2*x)^n/n for n in range(1,m+2)))
def A193425_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( f(x) ).egf_to_ogf().list()
A193425_list(m) # G. C. Greubel, Feb 02 2023
A293471
a(n) = [x^n] (1/(1 - 2*x/(1 - 2*x/(1 - 4*x/(1 - 4*x/(1 - 6*x/(1 - 6*x/(1 - ...))))))))^n, a continued fraction.
Original entry on oeis.org
1, 2, 20, 248, 3472, 53152, 878144, 15577984, 296411392, 6054973952, 132994708480, 3144712222720, 80063883022336, 2192452931723264, 64427309553434624, 2025284853319303168, 67859418068644069376, 2414526405567056052224, 90909088845844899430400, 3610058425696043667030016
Offset: 0
-
Table[SeriesCoefficient[1/(1 + ContinuedFractionK[-2 Floor[(k + 1)/2] x, 1, {k, 1, n}])^n, {x, 0, n}], {n, 0, 19}]
Table[SeriesCoefficient[Sum[(2 k)!! x^k, {k, 0, n}]^n, {x, 0, n}], {n, 0, 19}]
A305577
a(n) = Sum_{k=0..n} k!!*(n - k)!!.
Original entry on oeis.org
1, 2, 5, 10, 26, 58, 167, 414, 1324, 3606, 12729, 37674, 145578, 463770, 1944879, 6614190, 29852856, 107616150, 518782545, 1970493210, 10077228270, 40125873690, 216425656215, 899557170750, 5091758227620, 22011865939350, 130202223160905, 583641857191050, 3594820517111250
Offset: 0
-
a:= proc(n) option remember; `if`(n<4, n^2+1,
((3*n^2-4*n-2)*a(n-2) +(n+1)*a(n-3)
-2*a(n-1) -(n-1)^2*n*a(n-4))/(2*n-4))
end:
seq(a(n), n=0..35); # Alois P. Heinz, Jun 14 2018
-
Table[Sum[k!! (n - k)!!, {k, 0, n}], {n, 0, 28}]
nmax = 28; CoefficientList[Series[Sum[k!! x^k, {k, 0, nmax}]^2, {x, 0, nmax}], x]
A384200
Expansion of e.g.f. -log(1 - 3*x)/(3 * (1 - x)).
Original entry on oeis.org
0, 1, 5, 33, 294, 3414, 49644, 872388, 18001584, 426553776, 11408104800, 339766164000, 11148335337600, 399489448694400, 15520734764640000, 649782085752172800, 29160211264750540800, 1396381090351116441600, 71068392067688315596800, 3830710201119961857331200
Offset: 0
-
[0] cat [n le 1 select 1 else n * Self(n-1) + 3^(n-1) * Factorial(n-1): n in [1..20]]; // Vincenzo Librandi, May 22 2025
-
a[n_]:= n! * Sum[(3)^(k-1)/k,{k,1,n}];Table[a[n],{n,0,19}] (* Vincenzo Librandi, May 22 2025 *)
-
a(n) = n!*sum(k=1, n, 3^(k-1)/k);
Showing 1-5 of 5 results.
Comments