cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A126671 Triangle read by rows: row n (n>=0) has g.f. Sum_{i=1..n} n!*x^i*(1+x)^(n-i)/(n+1-i).

Original entry on oeis.org

0, 0, 1, 0, 1, 3, 0, 2, 7, 11, 0, 6, 26, 46, 50, 0, 24, 126, 274, 326, 274, 0, 120, 744, 1956, 2844, 2556, 1764, 0, 720, 5160, 16008, 28092, 30708, 22212, 13068, 0, 5040, 41040, 147120, 304464, 401136, 351504, 212976, 109584, 0, 40320
Offset: 1

Views

Author

N. J. A. Sloane and Carlo Wood (carlo(AT)alinoe.com), Feb 13 2007

Keywords

Comments

The first nonzero column gives the factorial numbers, which are Stirling_1(*,1), the rightmost diagonal gives Stirling_1(*,2), so this triangle may be regarded as interpolating between the first two columns of the Stirling numbers of the first kind.
This is a slice (the right-hand wall) through the infinite square pyramid described in the link. The other three walls give A007318 and A008276 (twice).
The coefficients of the A165674 triangle are generated by the asymptotic expansion of the higher order exponential integral E(x,m=2,n). The a(n) formulas for the coefficients in the right hand columns of this triangle lead to Wiggen's triangle A028421 and their o.g.f.s. lead to the sequence given above. Some right hand columns of the A165674 triangle are A080663, A165676, A165677, A165678 and A165679. - Johannes W. Meijer, Oct 07 2009

Examples

			Triangle begins:
0,
0, 1,
0, 1, 3,
0, 2, 7, 11,
0, 6, 26, 46, 50,
0, 24, 126, 274, 326, 274,
0, 120, 744, 1956, 2844, 2556, 1764,
0, 720, 5160, 16008, 28092, 30708, 22212, 13068,
0, 5040, 41040, 147120, 304464, 401136, 351504, 212976, 109584,
0, 40320, 367920, 1498320, 3582000, 5562576, 5868144, 4292496, 2239344, 1026576, ...
		

Crossrefs

Columns give A000142, A108217, A126672; diagonals give A000254, A067318, A126673. Row sums give A126674. Alternating row sums give A000142.
See A126682 for the full pyramid of coefficients of the underlying polynomials.

Programs

  • Maple
    for n from 1 to 15 do t1:=add( n!*x^i*(1+x)^(n-i)/(n+1-i), i=1..n); series(t1,x,100); lprint(seriestolist(%)); od:
  • Mathematica
    Join[{{0}}, Reap[For[n = 1, n <= 15, n++, t1 = Sum[n!*x^i*(1+x)^(n-i)/(n+1-i), {i, 1, n}]; se = Series[t1, {x, 0, 100}]; Sow[CoefficientList[se, x]]]][[2, 1]]] // Flatten (* Jean-François Alcover, Jan 07 2014, after Maple *)

Formula

Recurrence: T(n,0) = 0; for n>=0, i>=1, T(n+1,i) = (n+1)*T(n,i) + n!*binomial(n,i).
E.g.f.: x*log(1-(1+x)*y)/(x*y-1)/(1+x). - Vladeta Jovovic, Feb 13 2007

A193425 Expansion of e.g.f.: (1 - 2*x)^(-1/(1-x)).

Original entry on oeis.org

1, 2, 12, 96, 976, 12000, 172608, 2838528, 52474112, 1076451840, 24254069760, 595235266560, 15801350443008, 451082627014656, 13778232107286528, 448348123661598720, 15483358506138009600, 565560454279135887360
Offset: 0

Views

Author

Paul D. Hanna, Jul 27 2011

Keywords

Examples

			E.g.f.: A(x) = 1 + 2*x + 12*x^2/2! + 96*x^3/3! + 976*x^4/4! + 12000*x^5/5! +...
where the logarithm involves sums of reciprocal binomial coefficients:
log(A(x)) = 2*x*(1) + (2*x)^2/2*(1 + 1) + (2*x)^3/3*(1 + 1/2 + 1) + (2*x)^4/4*(1 + 1/3 + 1/3 + 1) + (2*x)^5/5*(1 + 1/4 + 1/6 + 1/4 + 1) + (2*x)^6/6*(1 + 1/5 + 1/10 + 1/10 + 1/5 + 1) +...
Explicitly, the logarithm begins:
log(A(x)) = 2*x + 8*x^2/2! + 40*x^3/3! + 256*x^4/4! + 2048*x^5/5! + 19968*x^6/6! +...
in which the coefficients equal 2*A126674(n).
		

Crossrefs

Cf. A126674.

Programs

  • Magma
    m:=50;
    f:= func< x | Exp((&+[(&+[ 1/Binomial(n-1,k): k in [0..n-1]])*(2*x)^n/n: n in [1..m+2]])) >;
    R:=PowerSeriesRing(Rationals(), m);
    Coefficients(R!(Laplace( f(x) ))); // G. C. Greubel, Feb 02 2023
    
  • Mathematica
    CoefficientList[Series[(1-2*x)^(-1/(1-x)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 27 2013 *)
  • PARI
    {a(n)=n!*polcoeff(exp(sum(m=1,n,2^m*x^m/m*sum(k=0,m-1,1/binomial(m-1,k)))+x*O(x^n)),n)}
    
  • PARI
    {a(n)=n!*polcoeff((1-2*x+x*O(x^n))^(-1/(1-x)),n)}
    
  • SageMath
    m=50
    def f(x): return exp(sum(sum( 1/binomial(n-1,k) for k in range(n))*(2*x)^n/n for n in range(1,m+2)))
    def A193425_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(x) ).egf_to_ogf().list()
    A193425_list(m) # G. C. Greubel, Feb 02 2023

Formula

E.g.f.: exp( Sum_{n>=1} (2*x)^n/n * Sum_{k=0..n-1} 1/C(n-1,k) ).
E.g.f.: exp( Sum_{n>=1} 2*A126674(n)*x^n/n ), where A126674(n) = n!*Sum_{j=0..n-1} 2^j/(j+1).
a(n) ~ n!*n*2^n * (1 - 2*log(n)/n). - Vaclav Kotesovec, Jun 27 2013

A293471 a(n) = [x^n] (1/(1 - 2*x/(1 - 2*x/(1 - 4*x/(1 - 4*x/(1 - 6*x/(1 - 6*x/(1 - ...))))))))^n, a continued fraction.

Original entry on oeis.org

1, 2, 20, 248, 3472, 53152, 878144, 15577984, 296411392, 6054973952, 132994708480, 3144712222720, 80063883022336, 2192452931723264, 64427309553434624, 2025284853319303168, 67859418068644069376, 2414526405567056052224, 90909088845844899430400, 3610058425696043667030016
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 09 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1/(1 + ContinuedFractionK[-2 Floor[(k + 1)/2] x, 1, {k, 1, n}])^n, {x, 0, n}], {n, 0, 19}]
    Table[SeriesCoefficient[Sum[(2 k)!! x^k, {k, 0, n}]^n, {x, 0, n}], {n, 0, 19}]

Formula

a(n) ~ sqrt(Pi) * 2^(n + 1/2) * n^(n + 3/2) / exp(n-1). - Vaclav Kotesovec, Sep 16 2021

A305577 a(n) = Sum_{k=0..n} k!!*(n - k)!!.

Original entry on oeis.org

1, 2, 5, 10, 26, 58, 167, 414, 1324, 3606, 12729, 37674, 145578, 463770, 1944879, 6614190, 29852856, 107616150, 518782545, 1970493210, 10077228270, 40125873690, 216425656215, 899557170750, 5091758227620, 22011865939350, 130202223160905, 583641857191050, 3594820517111250
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 05 2018

Keywords

Comments

Convolution of A006882 with itself.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, n^2+1,
          ((3*n^2-4*n-2)*a(n-2) +(n+1)*a(n-3)
           -2*a(n-1) -(n-1)^2*n*a(n-4))/(2*n-4))
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Jun 14 2018
  • Mathematica
    Table[Sum[k!! (n - k)!!, {k, 0, n}], {n, 0, 28}]
    nmax = 28; CoefficientList[Series[Sum[k!! x^k, {k, 0, nmax}]^2, {x, 0, nmax}], x]

Formula

G.f.: (Sum_{k>=0} k!!*x^k)^2.

A384200 Expansion of e.g.f. -log(1 - 3*x)/(3 * (1 - x)).

Original entry on oeis.org

0, 1, 5, 33, 294, 3414, 49644, 872388, 18001584, 426553776, 11408104800, 339766164000, 11148335337600, 399489448694400, 15520734764640000, 649782085752172800, 29160211264750540800, 1396381090351116441600, 71068392067688315596800, 3830710201119961857331200
Offset: 0

Views

Author

Seiichi Manyama, May 22 2025

Keywords

Crossrefs

Cf. A126674.

Programs

  • Magma
    [0] cat [n le 1 select 1  else  n * Self(n-1) + 3^(n-1) * Factorial(n-1): n in [1..20]]; // Vincenzo Librandi, May 22 2025
  • Mathematica
    a[n_]:= n! * Sum[(3)^(k-1)/k,{k,1,n}];Table[a[n],{n,0,19}] (* Vincenzo Librandi, May 22 2025 *)
  • PARI
    a(n) = n!*sum(k=1, n, 3^(k-1)/k);
    

Formula

a(n) = n! * Sum_{k=1..n} 3^(k-1)/k.
a(n) = n * a(n-1) + 3^(n-1) * (n-1)!.
a(n) = (4*n-3) * a(n-1) - 3 * (n-1)^2 * a(n-2).
Showing 1-5 of 5 results.