Original entry on oeis.org
0, 2, 26, 274, 2844, 30708, 351504, 4292496, 55988640, 779171040, 11545476480, 181705299840, 3029581820160, 53376951801600, 991337037465600, 19363464423475200, 396915849843609600, 8520964324004966400, 191220598650009600000, 4477883953203763200000, 109242544826541772800000
Offset: 2
- L. Carlitz, Generalized Stirling numbers, Combinatorial Analysis Notes, Duke University, 1968, 1-7.
-
[Factorial(n)*(n*(n-5)/4 + HarmonicNumber(n)): n in [2..25]]; // G. C. Greubel, May 05 2019
-
seq(n!*(sum(1/k, k = 1 .. n)+(1/4)*n*(n-5)), n = 2 .. 21); # Emeric Deutsch, Oct 10 2007
-
Table[n!*(n*(n-5)/4 + HarmonicNumber[n]), {n,2,25}] (* G. C. Greubel, May 05 2019 *)
-
my(x='x+O('x^30)); concat([0], Vec(serlaplace( (2*x - 3*x^2 + 2*(1-x)^2*log(1-x))/(2*(-1+x)^3) ))) \\ G. C. Greubel, May 05 2019
-
[factorial(n)*(n*(n-5)/4 + harmonic_number(n)) for n in (2..25)] # G. C. Greubel, May 05 2019
Original entry on oeis.org
0, 11, 46, 274, 1956, 16008, 147120, 1498320, 16742880, 203656320, 2678780160, 37888300800, 573444748800, 9248083891200, 158328230860800, 2867904245606400, 54799402065408000, 1101605810393088000, 23241327926648832000, 513476773573091328000, 11855774776045584384000
Offset: 2
A080663
a(n) = 3*n^2 - 1.
Original entry on oeis.org
2, 11, 26, 47, 74, 107, 146, 191, 242, 299, 362, 431, 506, 587, 674, 767, 866, 971, 1082, 1199, 1322, 1451, 1586, 1727, 1874, 2027, 2186, 2351, 2522, 2699, 2882, 3071, 3266, 3467, 3674, 3887, 4106, 4331, 4562, 4799, 5042, 5291, 5546, 5807, 6074, 6347, 6626
Offset: 1
- Ethan D. Bolker, Elementary Number Theory: An Algebraic Approach. Mineola, New York: Dover Publications (1969, reprinted 2007): p. 7, Problem 6.6.
- E. Grosswald, Topics from the Theory of Numbers, 1966 p 64 problem 11
- Nathaniel Johnston, Table of n, a(n) for n = 1..10000
- Cino Hilliard, 3n^2 - 1 not square. [Archived copy as of Apr 11 2008 from web.archive.org]
- Ana Rechtman, Juin 2020, 1er défi, Images des Mathématiques, CNRS, 2020 (in French).
- Leo Tavares, Illustration: Conjoined Trapezoids
- Eric Weisstein's World of Mathematics, Symmetric Polynomial.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
[3*n^2-1 : n in [1..50]]; // Wesley Ivan Hurt, Sep 04 2014
-
A080663 := proc(n) return 3*n^2-1: end proc: seq(A080663(n), n=1..50); # Nathaniel Johnston, Oct 16 2013
-
3*Range[47]^2 - 1 (* Alonso del Arte, Oct 19 2013 *)
-
list(n) = { for(x=1,n, y = 3*x*x-1; print1(y, ", ") ) } \\ edited by Michel Marcus, Feb 01 2020
-
Vec(x*(2+5*x-x^2)/(1-x)^3+O(x^66)) \\ Joerg Arndt, Sep 06 2014
A165674
Triangle generated by the asymptotic expansions of the E(x,m=2,n).
Original entry on oeis.org
1, 3, 1, 11, 5, 1, 50, 26, 7, 1, 274, 154, 47, 9, 1, 1764, 1044, 342, 74, 11, 1, 13068, 8028, 2754, 638, 107, 13, 1, 109584, 69264, 24552, 5944, 1066, 146, 15, 1, 1026576, 663696, 241128, 60216, 11274, 1650, 191, 17, 1
Offset: 1
A093905 is the reversal of this triangle.
A080663, n>=2, is the third right hand column.
A094587 is generated by the asymptotic expansions of E(x, m=1, n).
-
nmax:=9; for n from 1 to nmax do a(n, n) := 1 od: for n from 2 to nmax do a(n, 1) := n*a(n-1, 1) + (n-1)! od: for n from 3 to nmax do for m from 2 to n-1 do a(n, m) := (n-m+1)*a(n-1, m) + a(n-1, m-1) od: od: seq(seq(a(n, m), m = 1..n), n = 1..nmax);
# End program 1
nmax := nmax+1: m:=2; with(combinat): EA := proc(x, m, n) local E, i; E:=0: for i from m-1 to nmax+2 do E := E + sum((-1)^(m+k1+1) * binomial(k1, m-1) * n^(k1-m+1) * stirling1(i, k1), k1=m-1..i) / x^(i-m+1) od: E:= exp(-x)/x^(m) * E: return(E); end: for n1 from 1 to nmax do f(n1-1) := simplify(exp(x) * x^(nmax+3) * EA(x, m, n1)); for m1 from 0 to nmax+2 do b(n1-1, m1) := coeff(f(n1-1), x, nmax+2-m1) od: od: for n1 from 0 to nmax-1 do for m1 from 0 to n1-m+1 do a(n1-m+2, m1+1) := abs(b(m1, n1-m1)) od: od: seq(seq(a(n, m), m = 1..n),n = 1..nmax-1);
# End program 2
# Maple programs revised by Johannes W. Meijer, Sep 22 2012
A105954
Array read by descending antidiagonals: A(n, k) = (n + 1)! * H(k, n + 1), where H(n, k) is a higher-order harmonic number, H(0, k) = 1/k and H(n, k) = Sum_{j=1..k} H(n-1, j), for 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 3, 2, 1, 5, 11, 6, 1, 7, 26, 50, 24, 1, 9, 47, 154, 274, 120, 1, 11, 74, 342, 1044, 1764, 720, 1, 13, 107, 638, 2754, 8028, 13068, 5040, 1, 15, 146, 1066, 5944, 24552, 69264, 109584, 40320, 1, 17, 191, 1650, 11274, 60216, 241128, 663696, 1026576, 362880
Offset: 0
A(2, 2) = (1 + (1 + 1/2) + (1 + 1/2 + 1/3))*6 = 26.
Array A(n, k) begins:
[n\k] 0 1 2 3 4 5 6
-------------------------------------------------------------------
[0] 1, 1, 1, 1, 1, 1, 1, ...
[1] 1, 3, 5, 7, 9, 11, 13, ...
[2] 2, 11, 26, 47, 74, 107, 146, ...
[3] 6, 50, 154, 342, 638, 1066, 1650, ...
[4] 24, 274, 1044, 2754, 5944, 11274, 19524, ...
[5] 120, 1764, 8028, 24552, 60216, 127860, 245004, ...
[6] 720, 13068, 69264, 241128, 662640, 1557660, 3272688, ...
[7] 5040, 109584, 663696, 2592720, 7893840, 20355120, 46536624, ...
- G. C. Greubel, Table of n, a(n) for the first 27 rows, flattened
- Arthur T. Benjamin, David Gaebler and Robert Gaebler, A Combinatorial Approach to Hyperharmonic Numbers, INTEGERS, Electronic Journal of Combinatorial Number Theory, Volum 3, #A15, 2003.
Column 0 =
A000142 (factorial numbers).
Column 1 =
A000254 (Stirling numbers of first kind s(n, 2)) starting at n=1.
Column 2 =
A001705 (Generalized Stirling numbers: a(n) = n!*Sum_{k=0..n-1}(k+1)/(n-k)), starting at n=1.
Column 3 =
A001711 (Generalized Stirling numbers: a(n) = Sum_{k=0..n}(-1)^(n+k)*(k+1)*3^k*stirling1(n+1, k+1)).
Column 4 =
A001716 (Generalized Stirling numbers: a(n) = Sum_{k=0..n}(-1)^(n+k)*(k+1)*4^k*stirling1(n+1, k+1)).
Column 5 =
A001721 (Generalized Stirling numbers: a(n) = Sum_{k=0..n}(-1)^(n+k)*binomial(k+1, 1)*5^k*stirling1(n+1, k+1)).
2nd row is
A005408 (2n - 1, starting at n=1).
3rd row is
A080663 (3n^2 - 1, starting at n=1).
-
H := proc(n, k) option remember; if n = 0 then 1/k else add(H(n - 1, j), j = 1..k) fi end: A := (n, k) -> (n + 1)!*H(k, n + 1):
# Alternative with standard harmonic number:
A := (n, k) -> if k = 0 then n! else (harmonic(n + k) - harmonic(k - 1))*(n + k)! / (k - 1)! fi:
for n from 0 to 7 do seq(A(n, k), k = 0..6) od;
# Alternative with hypergeometric formula:
A := (n, k) -> (n+1)*((n + k)! / k!)*hypergeom([-n, 1, 1], [2, k+1], 1):
seq(print(seq(simplify(A(n, k)), k = 0..6)), n=0..7); # Peter Luschny, Jul 01 2022
-
H[0, m_] := 1/m; H[n_, m_] := Sum[H[n - 1, k], {k, m}]; a[n_, m_] := m!H[n, m]; Flatten[ Table[ a[i, n - i], {n, 10}, {i, n - 1, 0, -1}]]
Table[ a[n, m], {m, 8}, {n, 0, m + 1}] // TableForm (* to view the table *)
(* Robert G. Wilson v, Jun 27 2005 *)
-
a(n, k) = polcoef(prod(j=0, n, 1+(j+k)*x), n); \\ Seiichi Manyama, May 19 2025
A126674
a(n) = n!*Sum_{j=0..n-1} 2^j/(j+1).
Original entry on oeis.org
0, 1, 4, 20, 128, 1024, 9984, 115968, 1572864, 24477696, 430571520, 8452177920, 183175741440, 4343275192320, 111817607086080, 3105593229312000, 92539365359616000, 2944365169213440000, 99619235621240832000, 3571109329517936640000, 135199252993504444416000, 5390266968989421797376000
Offset: 0
-
[0] cat [Factorial(n)*(&+[2^j/(j+1):j in [0..n-1]]):n in [1..21]]; // Marius A. Burtea, Jul 12 2019
-
F:=n->add( n!*2^i/(1+i), i=0..n-1);
-
Table[n!Sum[2^j/(j+1),{j,0,n-1}],{n,0,30}] (* Harvey P. Dale, Jun 14 2017 *)
-
a(n) = n!*sum(j=0, n-1, 2^j/(j+1)); \\ Michel Marcus, Jul 12 2019
A165676
Fourth right hand column of triangle A165674.
Original entry on oeis.org
50, 154, 342, 638, 1066, 1650, 2414, 3382, 4578, 6026, 7750, 9774, 12122, 14818, 17886, 21350, 25234, 29562, 34358, 39646, 45450, 51794, 58702, 66198, 74306, 83050, 92454, 102542, 113338, 124866, 137150, 150214, 164082, 178778
Offset: 1
A165677
Fifth right hand column of triangle A165674.
Original entry on oeis.org
274, 1044, 2754, 5944, 11274, 19524, 31594, 48504, 71394, 101524, 140274, 189144, 249754, 323844, 413274, 520024, 646194, 794004, 965794, 1164024, 1391274, 1650244, 1943754, 2274744, 2646274, 3061524, 3523794, 4036504
Offset: 1
A165678
Sixth right hand column of triangle A165674.
Original entry on oeis.org
1764, 8028, 24552, 60216, 127860, 245004, 434568, 725592, 1153956, 1763100, 2604744, 3739608, 5238132, 7181196, 9660840, 12780984, 16658148, 21422172, 27216936, 34201080, 42548724, 52450188, 64112712, 77761176, 93638820
Offset: 1
-
LinearRecurrence[{6,-15,20,-15,6,-1},{1764,8028,24552,60216,127860,245004},30] (* Harvey P. Dale, Jun 18 2024 *)
A165679
Seventh right hand column of triangle A165674.
Original entry on oeis.org
13068, 69264, 241128, 662640, 1557660, 3272688, 6314664, 11393808, 19471500, 31813200, 50046408, 76223664, 112890588, 163158960, 230784840, 320251728, 436858764, 586813968, 777332520, 1016740080, 1314581148, 1681732464
Offset: 1
-
LinearRecurrence[{7,-21,35,-35,21,-7,1},{13068,69264,241128,662640,1557660,3272688,6314664},30] (* Harvey P. Dale, Aug 24 2012 *)
Showing 1-10 of 11 results.
Comments