cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A126673 Third diagonal of A126671.

Original entry on oeis.org

0, 2, 26, 274, 2844, 30708, 351504, 4292496, 55988640, 779171040, 11545476480, 181705299840, 3029581820160, 53376951801600, 991337037465600, 19363464423475200, 396915849843609600, 8520964324004966400, 191220598650009600000, 4477883953203763200000, 109242544826541772800000
Offset: 2

Views

Author

N. J. A. Sloane and Carlo Wood (carlo(AT)alinoe.com), Feb 13 2007

Keywords

Comments

It appears that a(n) = sum of invc(p) over all permutations p of {1,2,...,n}, where invc(p) is defined (by Carlitz) in the following way: express p in standard cycle form (i.e., cycles ordered by increasing smallest elements with each cycle written with its smallest element in the first position), then remove the parentheses and count the inversions in the obtained word. a(3)=2 because the six permutations 123,132,312,213,231 and 321 of {1,2,3} yield the words 123,123,132,123,123 and 132, respectively, having a total of 0+0+1+0+0+1 = 2 inversions. a(n) = Sum_{k>=0} k*A129178(n,k). - Emeric Deutsch, Oct 10 2007

References

  • L. Carlitz, Generalized Stirling numbers, Combinatorial Analysis Notes, Duke University, 1968, 1-7.

Crossrefs

Programs

  • Magma
    [Factorial(n)*(n*(n-5)/4 + HarmonicNumber(n)): n in [2..25]]; // G. C. Greubel, May 05 2019
    
  • Maple
    seq(n!*(sum(1/k, k = 1 .. n)+(1/4)*n*(n-5)), n = 2 .. 21); # Emeric Deutsch, Oct 10 2007
  • Mathematica
    Table[n!*(n*(n-5)/4 + HarmonicNumber[n]), {n,2,25}] (* G. C. Greubel, May 05 2019 *)
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(serlaplace( (2*x - 3*x^2 + 2*(1-x)^2*log(1-x))/(2*(-1+x)^3) ))) \\ G. C. Greubel, May 05 2019
    
  • Sage
    [factorial(n)*(n*(n-5)/4 + harmonic_number(n)) for n in (2..25)] # G. C. Greubel, May 05 2019

Formula

a(n) = n! * (n*(n-5)/4 + 1 + 1/2 + ... + 1/n). - Emeric Deutsch, Oct 10 2007
E.g.f.: (2*x - 3*x^2 + 2*(1-x)^2 * log(1-x)) / (2*(-1+x)^3). - G. C. Greubel, May 05 2019
a(n) = 2 * Sum_{k>=1} k * A381529(n,k). - Alois P. Heinz, Feb 26 2025

A126672 Third column of A126671.

Original entry on oeis.org

0, 11, 46, 274, 1956, 16008, 147120, 1498320, 16742880, 203656320, 2678780160, 37888300800, 573444748800, 9248083891200, 158328230860800, 2867904245606400, 54799402065408000, 1101605810393088000, 23241327926648832000, 513476773573091328000, 11855774776045584384000
Offset: 2

Views

Author

N. J. A. Sloane and Carlo Wood (carlo(AT)alinoe.com), Feb 13 2007

Keywords

A080663 a(n) = 3*n^2 - 1.

Original entry on oeis.org

2, 11, 26, 47, 74, 107, 146, 191, 242, 299, 362, 431, 506, 587, 674, 767, 866, 971, 1082, 1199, 1322, 1451, 1586, 1727, 1874, 2027, 2186, 2351, 2522, 2699, 2882, 3071, 3266, 3467, 3674, 3887, 4106, 4331, 4562, 4799, 5042, 5291, 5546, 5807, 6074, 6347, 6626
Offset: 1

Views

Author

Cino Hilliard, Mar 01 2003

Keywords

Comments

These numbers cannot be perfect squares. See the Hilliard link for a proof.
2nd elementary symmetric polynomial of n, n + 1 and n + 2: n(n+1) + n(n+2) + (n+1)(n+2). - Zak Seidov, Mar 23 2005
This sequence equals for n >= 2 the third right hand column of triangle A165674. Its recurrence relation leads to Pascal's triangle A007318. Crowley's formula for A080663(n-1) leads to Wiggen's triangle A028421 and the o.g.f. of this sequence, without the first term, leads to Wood's polynomials A126671. See also A165676, A165677, A165678 and A165679. - Johannes W. Meijer, Oct 16 2009
The Diophantine equation x(x+1) + (x+2)(x+3) = (x+y)^2 + (x-y)^2 has solutions x = a(n), y = 3n. - Bruno Berselli, Mar 29 2013
A simpler proof that these numbers can't be perfect squares can easily be constructed using congruences: If the equation x^2 = 3y^2 - 1 has a solution in positive integers, then x^2 = 2 mod 3. Obviously we can't have x = 0 mod 3, and x = 1 mod 3 doesn't work either because then x^2 = 1 mod 3 also. That leaves x = 2 mod 3, but then x^2 = 1 mod 3. - Alonso del Arte, Oct 19 2013
2*a(n+1) is surface area of a rectangular prism with consecutive integer sides: n, n+1, and n+2, (n>0). - Wesley Ivan Hurt, Sep 06 2014
Numbers m such that 3*m+3 is a square. So, these are the numbers m such that the system of equations x=sqrt(m-2yz), y=sqrt(m+1-2xz), z=sqrt(m+2-2xy) admits 3 real positive solutions whose sum is an integer. See the Rechtman link. - Michel Marcus, Jun 06 2020

References

  • Ethan D. Bolker, Elementary Number Theory: An Algebraic Approach. Mineola, New York: Dover Publications (1969, reprinted 2007): p. 7, Problem 6.6.
  • E. Grosswald, Topics from the Theory of Numbers, 1966 p 64 problem 11

Crossrefs

Programs

Formula

a(n) = -Re((1 + n*i)^3) where i=sqrt(-1). - Gary W. Adamson, Aug 14 2006
a(n) = 3*n^2 - 1. - Stephen Crowley, Jul 06 2009
a(n) = a(n-1) - 3*a(n-2) + 3*a(n-3). - Johannes W. Meijer, Oct 16 2009
G.f.: x*(2 + 5*x - x^2)/(1-x)^3. - Joerg Arndt, Sep 06 2014
a(n) = a(n-1) + 6*n - 3 for n > 1. - Vincenzo Librandi, Aug 08 2010
E.g.f.: 1 + exp(x)*(3*x^2 + 3*x - 1). - Stefano Spezia, Feb 01 2020
From Amiram Eldar, Feb 04 2021: (Start)
Sum_{n>=1} 1/a(n) = (1 - (Pi/sqrt(3))*cot(Pi/sqrt(3)))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = ((Pi/sqrt(3))*csc(Pi/sqrt(3)) - 1)/2.
Product_{n>=1} (1 + 1/a(n)) = (Pi/sqrt(3))*csc(Pi/sqrt(3)).
Product_{n>=1} (1 - 1/a(n)) = csc(Pi/sqrt(3))*sin(sqrt(2/3)*Pi)/sqrt(2). (End)
a(n) = A005449(n) + A115067(n). - Leo Tavares, May 25 2022
a(n) = (n-1)*n + (n-1)*(n+1) + n*(n+1), for n >= 1. See the Zak Seidov comment above. - Wolfdieter Lang, Aug 15 2024

A165674 Triangle generated by the asymptotic expansions of the E(x,m=2,n).

Original entry on oeis.org

1, 3, 1, 11, 5, 1, 50, 26, 7, 1, 274, 154, 47, 9, 1, 1764, 1044, 342, 74, 11, 1, 13068, 8028, 2754, 638, 107, 13, 1, 109584, 69264, 24552, 5944, 1066, 146, 15, 1, 1026576, 663696, 241128, 60216, 11274, 1650, 191, 17, 1
Offset: 1

Views

Author

Johannes W. Meijer, Oct 05 2009

Keywords

Comments

The higher order exponential integrals E(x,m,n) are defined in A163931. The asymptotic expansion of the E(x,m=2,n) ~ (exp(-x)/x^2)*(1 - (1+2*n)/x + (2+6*n+3*n^2)/x^2 - (6+22*n+18*n^2+ 4*n^3)/x^3 + ... ) is discussed in A028421. The formula for the asymptotic expansion leads for n = 1, 2, 3, .., to the left hand columns of the triangle given above.
The recurrence relations of the right hand columns of this triangle lead to Pascal's triangle A007318, their a(n) formulas lead to Wiggen's triangle A028421 and their o.g.f.s lead to Wood's polynomials A126671; cf. A080663, A165676, A165677, A165678 and A165679.
The row sums of this triangle lead to A093344. Surprisingly the e.g.f. of the row sums Egf(x) = (exp(1)*Ei(1,1-x) - exp(1)*Ei(1,1))/(1-x) leads to the exponential integrals in view of the fact that E(x,m=1,n=1) = Ei(n=1,x). We point out that exp(1)*Ei(1,1) = A073003.
The Maple programs generate the coefficients of the triangle given above. The first one makes use of a relation between the triangle coefficients, see the formulas, and the second one makes use of the asymptotic expansions of the E(x,m=2,n).
Amarnath Murthy discovered triangle A093905 which is the reversal of our triangle.
A165675 is an extended version of this triangle. Its reversal is A105954.
Triangle A094587 is generated by the asymptotic expansions of E(x,m=1,n).

Crossrefs

A093905 is the reversal of this triangle.
A000254, A001705, A001711, A001716, A001721, A051524, A051545, A051560, A051562, A051564 are the first ten left hand columns.
A080663, n>=2, is the third right hand column.
A165676, A165677, A165678 and A165679 are the next right hand columns, A093344 gives the row sums.
A073003 is Gompertz's constant.
A094587 is generated by the asymptotic expansions of E(x, m=1, n).
Cf. A165675, A105954 (Quet) and A067176 (Bottomley).
Cf. A007318 (Pascal), A028421 (Wiggen), A126671 (Wood).

Programs

  • Maple
    nmax:=9; for n from 1 to nmax do a(n, n) := 1 od: for n from 2 to nmax do a(n, 1) := n*a(n-1, 1) + (n-1)! od: for n from 3 to nmax do for m from 2 to n-1 do a(n, m) := (n-m+1)*a(n-1, m) + a(n-1, m-1) od: od: seq(seq(a(n, m), m = 1..n), n = 1..nmax);
    # End program 1
    nmax := nmax+1: m:=2; with(combinat): EA := proc(x, m, n) local E, i; E:=0: for i from m-1 to nmax+2 do E := E + sum((-1)^(m+k1+1) * binomial(k1, m-1) * n^(k1-m+1) * stirling1(i, k1), k1=m-1..i) / x^(i-m+1) od: E:= exp(-x)/x^(m) * E: return(E); end: for n1 from 1 to nmax do f(n1-1) := simplify(exp(x) * x^(nmax+3) * EA(x, m, n1)); for m1 from 0 to nmax+2 do b(n1-1, m1) := coeff(f(n1-1), x, nmax+2-m1) od: od: for n1 from 0 to nmax-1 do for m1 from 0 to n1-m+1 do a(n1-m+2, m1+1) := abs(b(m1, n1-m1)) od: od: seq(seq(a(n, m), m = 1..n),n = 1..nmax-1);
    # End program 2
    # Maple programs revised by Johannes W. Meijer, Sep 22 2012

Formula

a(n,m) = (n-m+1)*a(n-1,m) + a(n-1,m-1), for 2 <= m <= n-1, with a(n,n) = 1 and a(n,1) = n*a(n-1,1) + (n-1)!.
a(n,m) = product(i, i= m..n)*sum(1/i, i = m..n).

A105954 Array read by descending antidiagonals: A(n, k) = (n + 1)! * H(k, n + 1), where H(n, k) is a higher-order harmonic number, H(0, k) = 1/k and H(n, k) = Sum_{j=1..k} H(n-1, j), for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 5, 11, 6, 1, 7, 26, 50, 24, 1, 9, 47, 154, 274, 120, 1, 11, 74, 342, 1044, 1764, 720, 1, 13, 107, 638, 2754, 8028, 13068, 5040, 1, 15, 146, 1066, 5944, 24552, 69264, 109584, 40320, 1, 17, 191, 1650, 11274, 60216, 241128, 663696, 1026576, 362880
Offset: 0

Views

Author

Leroy Quet, Jun 26 2005

Keywords

Comments

Antidiagonal sums are A093345 (n! * (1 + Sum_{i=1..n}((1/i)*Sum_{j=0..i-1} 1/j!))). - Gerald McGarvey, Aug 27 2005
A recasting of A093905 and A067176. - R. J. Mathar, Mar 01 2009
The triangular array of this sequence is the reversal of A165675 which is related to the asymptotic expansion of the higher order exponential integral E(x,m=2,n); see also A165674. - Johannes W. Meijer, Oct 16 2009

Examples

			A(2, 2) = (1 + (1 + 1/2) + (1 + 1/2 + 1/3))*6 = 26.
Array A(n, k) begins:
  [n\k]  0       1       2        3        4        5          6
  -------------------------------------------------------------------
  [0]    1,      1,      1,       1,       1,       1,         1, ...
  [1]    1,      3,      5,       7,       9,       11,       13, ...
  [2]    2,     11,     26,      47,      74,      107,      146, ...
  [3]    6,     50,    154,     342,     638,     1066,     1650, ...
  [4]   24,    274,   1044,    2754,    5944,    11274,    19524, ...
  [5]  120,   1764,   8028,   24552,   60216,   127860,   245004, ...
  [6]  720,  13068,  69264,  241128,  662640,  1557660,  3272688, ...
  [7] 5040, 109584, 663696, 2592720, 7893840, 20355120, 46536624, ...
		

Crossrefs

Column 0 = A000142 (factorial numbers).
Column 1 = A000254 (Stirling numbers of first kind s(n, 2)) starting at n=1.
Column 2 = A001705 (Generalized Stirling numbers: a(n) = n!*Sum_{k=0..n-1}(k+1)/(n-k)), starting at n=1.
Column 3 = A001711 (Generalized Stirling numbers: a(n) = Sum_{k=0..n}(-1)^(n+k)*(k+1)*3^k*stirling1(n+1, k+1)).
Column 4 = A001716 (Generalized Stirling numbers: a(n) = Sum_{k=0..n}(-1)^(n+k)*(k+1)*4^k*stirling1(n+1, k+1)).
Column 5 = A001721 (Generalized Stirling numbers: a(n) = Sum_{k=0..n}(-1)^(n+k)*binomial(k+1, 1)*5^k*stirling1(n+1, k+1)).
Column 6 = A051524 (2nd unsigned column of A051338) starting at n=1.
Column 7 = A051545 (2nd unsigned column of A051339) starting at n=1.
Column 8 = A051560 (2nd unsigned column of A051379) starting at n=1.
Column 9 = A051562 (2nd unsigned column of A051380) starting at n=1.
Column 10= A051564 (2nd unsigned column of A051523) starting at n=1.
2nd row is A005408 (2n - 1, starting at n=1).
3rd row is A080663 (3n^2 - 1, starting at n=1).
Main diagonal gives A384024.

Programs

  • Maple
    H := proc(n, k) option remember; if n = 0 then 1/k else add(H(n - 1, j), j = 1..k) fi end: A := (n, k) -> (n + 1)!*H(k, n + 1):
    # Alternative with standard harmonic number:
    A := (n, k) -> if k = 0 then n! else (harmonic(n + k) - harmonic(k - 1))*(n + k)! / (k - 1)! fi:
    for n from 0 to 7 do seq(A(n, k), k = 0..6) od;
    # Alternative with hypergeometric formula:
    A := (n, k) -> (n+1)*((n + k)! / k!)*hypergeom([-n, 1, 1], [2, k+1], 1):
    seq(print(seq(simplify(A(n, k)), k = 0..6)), n=0..7); # Peter Luschny, Jul 01 2022
  • Mathematica
    H[0, m_] := 1/m; H[n_, m_] := Sum[H[n - 1, k], {k, m}]; a[n_, m_] := m!H[n, m]; Flatten[ Table[ a[i, n - i], {n, 10}, {i, n - 1, 0, -1}]]
    Table[ a[n, m], {m, 8}, {n, 0, m + 1}] // TableForm (* to view the table *)
    (* Robert G. Wilson v, Jun 27 2005 *)
  • PARI
    a(n, k) = polcoef(prod(j=0, n, 1+(j+k)*x), n); \\ Seiichi Manyama, May 19 2025

Formula

A(n, k) = (Harmonic(n + k) - Harmonic(k - 1))*(n + k)!/(k - 1)! if k > 0, otherwise n!.
From Gerald McGarvey, Aug 27 2005, edited by Peter Luschny, Jul 02 2022: (Start)
E.g.f. for column k: -log(1 - x)/(x*(1 - x)^k).
Row 3 is r(n) = 4*n^3 + 18*n^2 + 22*n + 6.
Row 4 is r(n) = 5*n^4 + 40*n^3 + 105*n^2 + 100*n + 24.
Row 5 is r(n) = 6*n^5 + 75*n^4 + 340*n^3 + 675*n^2 + 548*n + 120.
Row 6 is r(n) = 7*n^6 + 126*n^5 + 875*n^4 + 2940*n^3 + 4872*n^2 + 3528*n + 720.
Row 7 is r(n) = 8*n^7 + 196*n^6 + 1932*n^5 + 9800*n^4 + 27076*n^3 + 39396*n^2 + 26136*n + 5040.
The sum of the polynomial coefficients for the n-th row is |S1(n, 2)|, which are the unsigned Stirling1 numbers which appear in column 1.
A(m, n) = Sum_{k=1..m} n*A094645(m, n)*(n+1)^(k-1). (A094645 is Generalized Stirling number triangle of first kind, e.g.f.: (1-y)^(1-x).) (End)
In Gerard McGarvey's formulas for the row coefficients we find Wiggen's triangle A028421 and their o.g.f.s lead to Wood's polynomials A126671; see A165674. - Johannes W. Meijer, Oct 16 2009
A(n, k) = (n + 1)*((n + k)! / k!)*hypergeom([-n, 1, 1], [2, k + 1], 1). - Peter Luschny, Jul 01 2022
A(n,k) = [x^n] Product_{j=0..n} (1 + (j+k)*x). - Seiichi Manyama, May 19 2025

Extensions

More terms from Robert G. Wilson v, Jun 27 2005
Edited by Peter Luschny, Jul 02 2022

A126674 a(n) = n!*Sum_{j=0..n-1} 2^j/(j+1).

Original entry on oeis.org

0, 1, 4, 20, 128, 1024, 9984, 115968, 1572864, 24477696, 430571520, 8452177920, 183175741440, 4343275192320, 111817607086080, 3105593229312000, 92539365359616000, 2944365169213440000, 99619235621240832000, 3571109329517936640000, 135199252993504444416000, 5390266968989421797376000
Offset: 0

Views

Author

N. J. A. Sloane and Carlo Wood (carlo(AT)alinoe.com), Feb 13 2007

Keywords

Comments

R. J. Mathar's recurrence is correct. a(n) has a new sum term in addition to what a(n-1) has, giving a(n) = n*a(n-1) + 2^(n-1)*(n-1)!. (Cf. A000165 = 2^n*n!.) The same for a(n-1) from a(n-2), and a factor, is 2*(n-1)*(a(n-1) - (n-1)*a(n-2)) = 2^(n-1)*(n-1)! too. Substitute it leaving a(n) in terms of a(n-1) and a(n-2). The recurrence shows the o.g.f. satisfies the differential equation (2*x^2-x+1)*g + 3*x^2*(2*x-1)*g' + 2*x^4*g'' - x = 0. - Kevin Ryde, Jul 11 2019

Crossrefs

Row sums of A126671.

Programs

  • Magma
    [0] cat [Factorial(n)*(&+[2^j/(j+1):j in [0..n-1]]):n in [1..21]]; // Marius A. Burtea, Jul 12 2019
    
  • Maple
    F:=n->add( n!*2^i/(1+i), i=0..n-1);
  • Mathematica
    Table[n!Sum[2^j/(j+1),{j,0,n-1}],{n,0,30}] (* Harvey P. Dale, Jun 14 2017 *)
  • PARI
    a(n) = n!*sum(j=0, n-1, 2^j/(j+1)); \\ Michel Marcus, Jul 12 2019

Formula

From Vladeta Jovovic, Feb 13 2007: (Start)
a(n) = 2^(n-1)*A003149(n-1).
O.g.f.: x*(Sum_{k>=0} k!*(2*x)^k)^2.
E.g.f.: log(1-2*x)/(x-1)/2. (End)
E.g.f.: E(x) = 1/2*log(1 - 2*x)/(x - 1) = x*(1 - x*G(0))/(x-1)/(2*x-1); G(k) = 1 + 2*x*(2*k+1)/(2*k + 3 - 2*x*(k+1)*(2*k+3)/(2*x*(k+1) + (k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 13 2011
G.f.: x*hypergeom([1,1],[],2*x)^2. - Mark van Hoeij, May 16 2013
Conjecture: a(n) + (-3*n+2)*a(n-1) + 2*(n-1)^2*a(n-2) = 0. - R. J. Mathar, May 23 2014
G.f.: x*(1/(1 - 2*x/(1 - 2*x/(1 - 4*x/(1 - 4*x/(1 - 6*x/(1 - 6*x/(1 - ...))))))))^2. - Ilya Gutkovskiy, May 10 2017

A165676 Fourth right hand column of triangle A165674.

Original entry on oeis.org

50, 154, 342, 638, 1066, 1650, 2414, 3382, 4578, 6026, 7750, 9774, 12122, 14818, 17886, 21350, 25234, 29562, 34358, 39646, 45450, 51794, 58702, 66198, 74306, 83050, 92454, 102542, 113338, 124866, 137150, 150214, 164082, 178778
Offset: 1

Views

Author

Johannes W. Meijer, Oct 05 2009

Keywords

Comments

The recurrence relation leads to Pascal's triangle A007318, the a(n) formula to Wiggen's triangle A028421 and the o.g.f to Wood's polynomials A126671; see A165674.

Crossrefs

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4)
a(n) = 6 + 22*n + 18*n^2 + 4*n^3
Gf(z) = (0*z^5 - 6*z^4 + 26*z^3 - 46*z^2 + 50*z)/(z-1)^4

A165677 Fifth right hand column of triangle A165674.

Original entry on oeis.org

274, 1044, 2754, 5944, 11274, 19524, 31594, 48504, 71394, 101524, 140274, 189144, 249754, 323844, 413274, 520024, 646194, 794004, 965794, 1164024, 1391274, 1650244, 1943754, 2274744, 2646274, 3061524, 3523794, 4036504
Offset: 1

Views

Author

Johannes W. Meijer, Oct 05 2009

Keywords

Comments

The recurrence relation leads to Pascal's triangle A007318, the a(n) formula to Wiggen's triangle A028421 and the o.g.f to Wood's polynomials A126671; see A165674.

Crossrefs

Formula

a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5)
a(n) = 24 + 100*n + 105*n^2 + 40*n^3 + 5*n^4
Gf(z) = (0*z^6 - 24*z^5 + 126*z^4 - 274*z^3 + 326*z^2 - 274*z)/(z-1)^5

A165678 Sixth right hand column of triangle A165674.

Original entry on oeis.org

1764, 8028, 24552, 60216, 127860, 245004, 434568, 725592, 1153956, 1763100, 2604744, 3739608, 5238132, 7181196, 9660840, 12780984, 16658148, 21422172, 27216936, 34201080, 42548724, 52450188, 64112712, 77761176, 93638820
Offset: 1

Views

Author

Johannes W. Meijer, Oct 05 2009

Keywords

Comments

The recurrence relation leads to Pascal's triangle A007318, the a(n) formula to Wiggen's triangle A028421 and the o.g.f to Wood's polynomials A126671; see A165674.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6,-15,20,-15,6,-1},{1764,8028,24552,60216,127860,245004},30] (* Harvey P. Dale, Jun 18 2024 *)

Formula

a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
a(n) = 120 + 548*n + 675*n^2 + 340*n^3 + 75*n^4 + 6*n^5.
Gf(z) = (0*z^7 - 120*z^6 + 744*z^5 - 1956*z^4 + 2844*z^3 - 2556*z^2 + 1764*z )/(z-1)^6.

A165679 Seventh right hand column of triangle A165674.

Original entry on oeis.org

13068, 69264, 241128, 662640, 1557660, 3272688, 6314664, 11393808, 19471500, 31813200, 50046408, 76223664, 112890588, 163158960, 230784840, 320251728, 436858764, 586813968, 777332520, 1016740080, 1314581148, 1681732464
Offset: 1

Views

Author

Johannes W. Meijer, Oct 05 2009

Keywords

Comments

The recurrence relation leads to Pascal's triangle A007318, the a(n) formula to Wiggen's triangle A028421 and the o.g.f to Wood's polynomials A126671; see A165674.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{13068,69264,241128,662640,1557660,3272688,6314664},30] (* Harvey P. Dale, Aug 24 2012 *)

Formula

a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7* a(n-6) + a(n-7)
a(n) = 720 + 3528*n + 4872*n^2 + 2940*n^3 + 875*n^4 + 126*n^5 +7*n^6
Gf(z) = (0*z^8 - 720*z^7 + 5160*z^6 - 16008*z^5 + 28092*z^4 - 30708*z^3 + 22212*z^2 - 13068*z)/(z-1)^7
Showing 1-10 of 11 results. Next